447A1

Name:

A

Register No.:

SAINTGITS COLLEGE OF ENGINEERING (AUTONOMOUS)

(AFFILIATED TO APJ ABDUL KALAM TECHNOLOGICAL UNIVERSITY, THIRUVANANTHAPURAM)

FIRST SEMESTER M.C.A DEGREE EXAMINATION (Regular), DECEMBER 2022

(2021 SCHEME)

Course Code: 21CA101

Course Name: Mathematical Foundations for Computing

Max. Marks: 60

Duration: 3 Hours

(2)

(2)

PART A

(Answer all questions. Each question carries 3 marks)

- 1. State De Morgan's law for two sets.
- 2. Given an example of a relation which is reflexive and transitive but not symmetric.
- 3. Using Euclidean algorithm to find gcd of 1025 and 35.
- 4. Solve the recurrence relation $a_{n+2} 4a_{n+1} + 4a_n = 0, n \ge 0$.
- 5. Define Planar Graph.
- 6. Draw a 3-regular Graph.
- 7. Prove that the vectors (1,-1, 1), (0, 1, 2) and (3, 0,-1) are linearly independent.
- 8. Find the eigenvalues of the matrix $\begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix}$
- 9. State the principle of least squares.
- 10. What are the normal equations for fitting of a straight line y = a + bx.

PART B

(Answer one full question from each module, each question carries 6 marks) MODULE I

- 11. a) Define Partial Order relation
 - b) Show that the divisibility relation '/' is a partial ordering on the set (4) of positive integers

OR

12. Show that the relation R in the set $\{1,2,3\}$ given by R= $\{(1,1),(2,2),(3,3),(1,2),(2,3)$ is reflexive but neither symmetric nor (6) transitive.

MODULE II

13. Find the gcd of 595 and 252 and express it in the form 252m+595n. (6)

OR

14. Solve the recurrence relation $a_n - 3a_{n-1} = 5(3^n)$, $n \ge 1$ and $a_0 = 2$. (6)

MODULE III

15. a) Define Complete Graph.

447A1

(6)

b) Show that a complete graph with n vertices has $\frac{n(n-1)}{2}$ edges. (4)

OR

- 16 Define Graph isomorphism and draw a pair of isomorphic graphs. (6) **MODULE IV**
- 17. By reducing to echelon form, find the rank of the matrix

$$A = \begin{bmatrix} 1 & 0 & 2 & 1 \\ 0 & 1 & -2 & 1 \\ 1 & -1 & 4 & 0 \\ -2 & 2 & 8 & 0 \end{bmatrix}$$
(6)
OR

18.

Α

Find the eigen values and eigen vectors of the matrix $A = \begin{bmatrix} 1 & 0 & -1 \\ 1 & 2 & 1 \\ 2 & 2 & 3 \end{bmatrix}$

MODULE V

Calculate Karl Pearson's correlation Coefficient from the following data 19

x	11	10	9	8	7	6	5	(6)	
у	20	18	12	8	10	5	4		
OR									

Fit a straight line to the following data 20.

	v	1	3	4	6	8	Q	11	14	(6)
L	А	1	5	т	0	0	9	11	17	()
	37	1	2	1	1	5	7	8	0	
L	у	L	4	7	Ť	3	1	0	9	