SAINTGITS COLLEGE OF ENGINEERING (AUTONOMOUS)

(AFFILIATED TO APJ ABDUL KALAM TECHNOLOGICAL UNIVERSITY, THIRUVANANTHAPURAM)
FIRST SEMESTER M.C.A DEGREE EXAMINATION (Regular), DECEMBER 2022 (2021 SCHEME)

```
Course Code: 21CA101
Course Name: Mathematical Foundations for Computing
Max. Marks: 60
Duration: 3 Hours
```


PART A

(Answer all questions. Each question carries 3 marks)

1. State De Morgan's law for two sets.
2. Given an example of a relation which is reflexive and transitive but not symmetric.
3. Using Euclidean algorithm to find gcd of 1025 and 35.
4. Solve the recurrence relation $a_{n+2}-4 a_{n+1}+4 a_{n}=0, n \geq 0$.
5. Define Planar Graph.
6. Draw a 3-regular Graph.
7. Prove that the vectors $(1,-1,1),(0,1,2)$ and $(3,0,-1)$ are linearly independent.
8. Find the eigenvalues of the matrix $\left[\begin{array}{ll}0 & 1 \\ 1 & 0\end{array}\right]$
9. State the principle of least squares.
10. What are the normal equations for fitting of a straight line $y=a+b x$.

PART B
 (Answer one full question from each module, each question carries 6 marks) MODULE I

11. a) Define Partial Order relation
b) Show that the divisibility relation '/' is a partial ordering on the set of positive integers
12. Show that the relation R in the set $\{1,2,3\}$ given by $\mathrm{R}=\{(1,1),(2,2),(3,3)(1,2),(2,3)$ is reflexive but neither symmetric nor (6) transitive.

MODULE II

13. Find the gcd of 595 and 252 and express it in the form $252 m+595$ n.

OR

14. Solve the recurrence relation $a_{n}-3 a_{n-1}=5\left(3^{n}\right), n \geq 1$ and $a_{0}=2$.

MODULE III

15. a) Define Complete Graph.
b) Show that a complete graph with n vertices has $\frac{n(n-1))}{2}$ edges.

OR

16 Define Graph isomorphism and draw a pair of isomorphic graphs.

MODULE IV

17. By reducing to echelon form, find the rank of the matrix

$$
A=\left[\begin{array}{cccc}
1 & 0 & 2 & 1 \tag{6}\\
0 & 1 & -2 & 1 \\
1 & -1 & 4 & 0 \\
-2 & 2 & 8 & 0
\end{array}\right]
$$

18.

Find the eigen values and eigen vectors of the matrix $A=\left[\begin{array}{ccc}1 & 0 & -1 \\ 1 & 2 & 1 \\ 2 & 2 & 3\end{array}\right]$

MODULE V

19 Calculate Karl Pearson's correlation Coefficient from the following data

x	11	10	9	8	7	6	5
y	20	18	12	8	10	5	4
OR							

20. Fit a straight line to the following data

x	1	3	4	6	8	9	11	14
y	1	2	4	4	5	7	8	9

