Page 1 of 4

Name:

Register No.:

SAINTGITS COLLEGE OF ENGINEERING (AUTONOMOUS)

(AFFILIATED TO APJ ABDUL KALAM TECHNOLOGICAL UNIVERSITY, THIRUVANANTHAPURAM)

FOURTH SEMESTER B.TECH DEGREE EXAMINATION (S), SEPT 2022

COMPUTER SCIENCE AND ENGINEERING (2020 SCHEME)

Course Code: 20MAT206

Course Name: Graph Theory

Max. Marks: 100

Duration: 3 Hours

PART A

(Answer all questions. Each question carries 3 marks)

- 1. Define a bipartite graph with an example. What is the number of vertices and edges of the complete bipartite graph $K_{101,102}$?
- 2. Is it possible to have a group of 9 people, each knowing exactly 7 others? Justify.
- 3. Define Euler graph. Give an example of a graph which is Euler as well as Hamiltonian.
- 4. Distinguish between reflexive digraph and transitive digraph.
- 5. Define minimally connected graph. Prove that a tree is minimally connected
- 6. Explain metric with an example.
- 7. Define cut set. Prove that for a tree every edge is a cut set.
- 8. Prove that K_5 is non planar.
- 9. Define incidence matrix of a graph.
- 10. Distinguish between Maximal matching and Perfect matching.

PART B

(Answer one full question from each module, each question carries 14 marks)

MODULE I

- 11. a) Define complete graph with an example. Obtain the number of edges of a complete graph with n vertices. (7)
 - b) Define degree of a vertex. Show that for any graph the number of vertices of odd degree is always even. (7)

OR

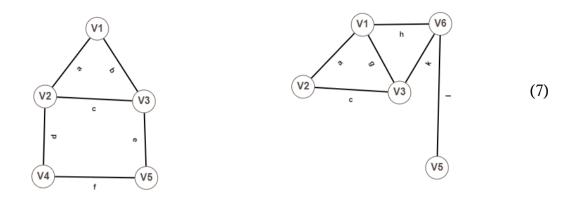
- 12. a) Prove that a simple graph with *n* vertices and *k* components can have at most $\frac{(n-k)(n-k+1)}{2}$ edges
 (7)
 - b) Explain the terms walk, path and cycles with examples. (7)

MODULE II

A

894A2

- Prove that in a complete graph K_n , $n \ge 3$ is odd, there are $\frac{(n-1)}{2}$ edge disjoint 13. a) (7) Hamiltonian cycles.
 - Find the union, intersection and ring sum of the graphs G_1 and G_2 b)

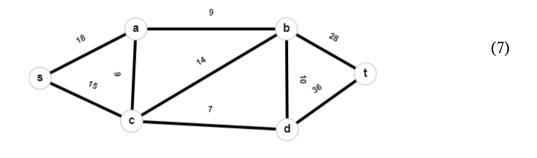


OR

- Explain travelling salesman problem. How it is related to Hamiltonian circuits. 14. a) (7)
 - Prove that a Euler graph can be decomposed into edge disjoint cycles. b) (7)

MODULE III

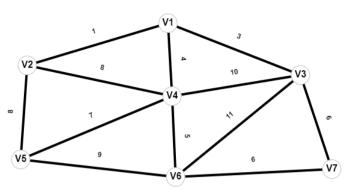
- Define spanning tree. Prove that every connected graph has at least one 15. a) (7) spanning tree
 - Write Dijkstra's algorithm. Using it find the length of the shortest path from s to b) t



- OR
- 16. Prove that every tree has one or two centers. a) (7) Write Prims algorithm find the minimal spanning tree of the following graph. b)
 - (7)

Α

4



MODULE IV

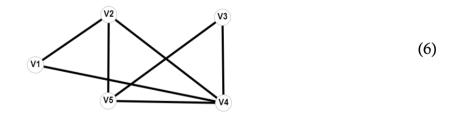
- 17. a) Prove that a graph is k -connected if and only if there exist at least k-disjoint paths between any pair of vertices in G (7)
 - b) Define Geometric dual of a graph. What is the relationship between planar graph and its dual? (7)

OR

18. a) Define cut vertex. Prove that every internal vertex of a tree is a cut vertex.(7)b) Prove that a connected planar graph with n vertices and e edges has(7)e - n + 2 faces(7)

MODULE V

- a) Define chromatic number. Prove that a non-empty graph is 2 chromatic if and only if it is bipartite.
 - b) Define adjacency matrix. Find the adjacency matrix of the following graph.



OR

- 20. a)Prove that every planar graph is 5 colourable.(8)
 - b) List the cycles and obtain the cycle matrix of the following graph. (6)

Total Pages: **4**

