SAINTGITS COLLEGE OF ENGINEERING (AUTONOMOUS)

(AFFILIATED TO APJ ABDUL KALAM TECHNOLOGICAL UNIVERSITY, THIRUVANANTHAPURAM)

FOURTH SEMESTER B.TECH DEGREE EXAMINATION (S), SEPT 2022 CHEMICAL ENGINEERING
 (2020 SCHEME)

Course Code : 20CHT204
Course Name:
Heat Transfer Operations
Max. Marks :
100
Duration: 3 Hours

PART A
 (Answer all questions. Each question carries 3 marks)

1. Define Fourier's law of heat conduction. Write the mathematical expression for heat flux through a composite slab.
2. What is Biot number? Write its significance.
3. Differentiate natural and forced convection with an example of each.
4. Explain the thermal boundary layer with the help of a figure.
5. What is the difference between a black body, grey body and white body?
6. How the drop wise condensation differ from film wise condensation?
7. What is LMTD? What are the significances of LMTD?
8. Draw and label the shell side and tube side fluid for a 2-2 pass shell and tube heat exchanger for heating hydrocarbon by using hot water.
9. Make a classification for multiple effect evaporator on the basis of direction of flow.
10. Define capacity and economy. How it is related for multiple effect evaporator with single effect evaporator?

PART B
 (Answer one full question from each module, each question carries 14 marks)
 MODULE I

11. a) Explain critical radius of insulation with the help of a graph.
b) A brick wall of 20 cm thickness has thermal conductivity of $0.7 \mathrm{Wm}^{-1} \mathrm{~K}^{-1}$. An insulation of thermal conductivity $0.2 \mathrm{Wm}^{-1} \mathrm{~K}^{-1}$ is to be applied on one side of the wall, so that the heat transfer through the wall is reduced by 75%. What is the required thickness of insulation for maintaining the same temperature difference across the wall before and after applying insulation?

OR
12. a) Derive the general heat conduction equation in Cartesian coordinates.
b) Two plates of equal thickness (t) and cross-sectional area are joined together to form a composite wall. If the thermal conductivity of the plates are k and $2 k$, what will be the effective thermal conductivity of the composite wall?

MODULE II

13. Water at 303 K enters a 25 mm ID tube at a rate of $1200 \mathrm{l} / \mathrm{h}$. Steam condenses on the outside surface of tube of 28 mm OD at a temperature of 393 K and its film heat transfer coefficient may be taken as $600 \mathrm{~W} / \mathrm{m}^{2} \mathrm{~K}$. Estimate the length of the tube required heat water to 343 K . Data: K for tube wall $=348.9$ W / mK, properties of water mean temperature of 323 K are: $\mathrm{k}=0.628 \mathrm{~W} / \mathrm{m}$ K , density $=980 \mathrm{~kg} / \mathrm{m}^{3}$, viscosity $=6 \times 10^{-4} \frac{\mathrm{~kg}}{\mathrm{~m} \cdot \mathrm{~s}}, \mathrm{C}_{\mathrm{P}}=4.187 \mathrm{~kJ} / \mathrm{kg} \cdot \mathrm{K}$.

OR

14. a) A hot fluid is flowing at a velocity of $2 \mathrm{~m} / \mathrm{s}$ through a metallic pipe having an inner diameter of 3.5 cm and length 20 cm . The temperature at the inlet of the pipe is $90^{\circ} \mathrm{C}$. Following data is given for liquid at $90{ }^{\circ} \mathrm{C}$. Density $=950$ $\mathrm{kg} / \mathrm{m}^{3}$, specific heat $=4.23 \mathrm{~kJ} / \mathrm{kg}{ }^{\circ} \mathrm{C}$, viscosity $=2.55 \times 10^{-4} \mathrm{~kg} / \mathrm{m} \cdot \mathrm{s}$, thermal conductivity $=0.685 \mathrm{~W} / \mathrm{m}{ }^{\circ} \mathrm{C}$. Find the heat transfer co-efficient inside the tube.
b) Air is flowing through the outer surface of a fluid flowing pipe at a velocity of $3 \mathrm{~m} / \mathrm{s}$ perpendicular to the direction of fluid flow. The outer diameter of the pipe is 6 cm and the temperature at the outside surface of the pipe is maintained at $100{ }^{\circ} \mathrm{C}$. The temperature of the air far from the tube is $30^{\circ} \mathrm{C}$. Kinematic viscosity of air $=18 \times 10^{-6} \mathrm{~m}^{2} / \mathrm{s}$, thermal conductivity $=0.03 \mathrm{~W} / \mathrm{m}$. K. Find the rate of heat loss per unit length from the pipe to air by using Nusselt correlation: $\mathrm{Nu}=0.024 \mathrm{Re}^{0.8}$.

MODULE III

15. a) Explain the different regimes of boiling in detail with figure.
b) The space between two hollow concentric spheres of radii 0.1 m and 0.2 m is under vacuum. Exchange of radiation (uniform in all directions) occurs only between the outer surface $\left(\mathrm{S}_{1}\right)$ of the smaller sphere and the inner suface $\left(\mathrm{S}_{2}\right)$ of the larger sphere. Find the fraction of radiation energy leaving from S_{2} and which reaches S_{1}.

OR

16. Sate your assumptions and derive an expression for convective heat transfer co-efficient in a laminar film condensation on a vertical plate with a suitable figure.

MODULE IV

17. a) A countercurrent double pipe heat exchanger is used to heat water flowing at $1 \mathrm{~kg} / \mathrm{s}$ from $40^{\circ} \mathrm{C}$ to $80^{\circ} \mathrm{C}$. Oil is used for heating and its temperature changes from $100{ }^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}$. The overall heat transfer co-efficient is $300 \mathrm{~W} / \mathrm{m}^{2}{ }^{\circ} \mathrm{C}$. If it is replaced by a 1-2 pass shell and tube heat exchanger with counter flow configuration with water flowing in shell side and oil in tube side, what is the excess area required with respect to the double pipe heat exchanger?
Data's given: LMTD correction factor, $\mathrm{Ft}=0.5, \mathrm{C}_{\mathrm{P}, \text { water }}=4180 \mathrm{~J} / \mathrm{kg}{ }^{\circ} \mathrm{C}, \mathrm{C}_{\mathrm{P}, \text { oil }}$
$2000 \mathrm{~J} / \mathrm{kg}{ }^{\circ} \mathrm{C}$.
(Heat transfer co-efficient remains unchanged, and the same inlet and outlet conditions are maintained)
b) What is fouling in heat exchanger? Explain with its types, fouling factors and its effect on heat transfer rate.

OR

18. a) Derive an expression for overall heat transfer co-efficient in a shell and tube heat exchanger when it is working on both co-current and countercurrent mode.
b) In a double pipe counter current heat exchanger, the hot fluid is entering at $100^{\circ} \mathrm{C}$ and leaves at $60^{\circ} \mathrm{C}$. The cold fluid is entering at $40^{\circ} \mathrm{C}$ and leaves at 80 ${ }^{0} \mathrm{C}$. During operation, due to fouling inside the pipe, heat transfer rate reduces to half of the original value. Find out the LMTD in the new situation by assuming that there is no change in flow rates and physical properties of the fluids.

MODULE V

19. a) Explain the principle and working of long tube vertical type evaporator with a neat figure.
b) An aqueous sodium chloride solution ($10 \mathrm{wt} \%$) is fed into a single effect evaporator at a rate of $10000 \mathrm{~kg} / \mathrm{hr}$. It is concentrated to a $20 \mathrm{wt} \%$ sodium chloride solution. The rate of consumption of steam in the evaporation is 8000 $\mathrm{kg} / \mathrm{hr}$. Find the evaporator capacity and economy?

OR
20. a) Explain the working of Calandria type evaporator with a neat figure.
b) It is desired to concentrate a 20% salt solution (20 kg of salt in 100 kg of solution) to a 30% salt solution in an evaporator. Consider a feed of 300 $\mathrm{kg} / \mathrm{min}$ at $30^{\circ} \mathrm{C}$. The boiling point of the solution is $110^{\circ} \mathrm{C}$, latent heat of vaporization is $2100 \mathrm{~kJ} / \mathrm{kg}$, and the specific heat of the solution is $4 \mathrm{~kJ} / \mathrm{kg} \cdot \mathrm{K}$. Determine the rate at which heat has to be supplied to the evaporator to get the required concentrated product.

