481A1

Register No.:

Name:

SAINTGITS COLLEGE OF ENGINEERING (AUTONOMOUS)

(AFFILIATED TO APJ ABDUL KALAM TECHNOLOGICAL UNIVERSITY, THIRUVANANTHAPURAM)

FOURTH SEMESTERB. TECH DEGREE EXAMINATION (S), SEPT 2022

COMMON TO EE, EC

(2020 SCHEME)

Course Code:	20MAT204	
Course Name:	Probability, Random Processes and Numerical Methods	
Max. Marks:	100	Duration: 3 Hours

(Non-programmable scientific calculators and statistical tables may be permitted)

PART A

(Answer all questions. Each question carries 3 marks)

- 1. *X* follows a Poisson distribution such that P[X = 2] = P[X = 3]. Find the mean and P[X = 4]
- 2. Determine the binomial distribution for which mean is 2 and variance is $\frac{4}{3}$
- 3. If *X* follows an exponential distribution with $P[X \le 1] = P[X > 1]$. Find the mean and variance of *X*
- 4. Random variable X is uniformly distributed in the interval (-k, k). Find the value of k if $P[X \ge 1] = \frac{1}{2}$
- 5. Define wide sense stationary random process
- 6. Compute the variance of the random process X(t) whose autocorrelation function is given by $R_{XX}(\zeta) = 25 + \frac{4}{1+6\zeta^2}$
- 7. Use Trapezoidal rule to evaluate $\int_0^1 e^{-x^2/2} dx$ considering 5 subintervals.
- 8. Find a root between 1 and 2 for $sinx = \frac{x}{2}$ using Newton-Raphson method, correct to three decimal places.
- 9. Use Runge-Kutta method of second order to find y(0.1) for $\frac{dy}{dx} = y + \sin x$, y(0) = 2(Take h = 0.1).
- 10. Given $\frac{dy}{dx} = \frac{y^2 2x}{y}$, y(0) = 1. Use Euler's method with h = 0.1 to compute the value of y(0.2).

PART B

(Answer one full question from each module, each question carries 14marks)

MODULE I

11. a) A Random variable *X* has the following probability distribution

				L L	1	5		_
	х	-2	-1	0	1	2	3	(7)
f	(x)	1	$15k^{2}$	1	2 <i>k</i>	3	3 k	(7)
		10		5		10		

Compute the following

- i. *k*
- ii. P[X < 2]
- iii. P[-2 < X < 2]
- iv. $P[X \le 2 | X > 0]$
- v. Mean.
- b) If on an average 9 ships out of 10 return safely to a port, what is the probability that out of 5 ships, 3 will arrive safely to the port? (7)

OR

12. a) Let X and Y be two random variables with joint pmf $p(x, y) = \frac{x+2y}{18}, x = 1,2$ and y = 1,2. Find the marginal pmf's of X and Y. (7) Are X and Y independent?

b) Prove that a binomial distribution can be approximated to Poisson distribution when *n* is large, *p* is small and $np = \lambda$ (7)

MODULE II

- 13. a) Given a distribution with unknown mean μ and variance 1.5.Use Central limit theorem to find how large a sample should be taken from the distribution in order that the probability will be atleast 0.95 that the sample mean will be within 0.5 of the population mean
 - b) Derive the formula for mean and variance of uniform distribution (7)

OR

- 14. a) If f(x, y) = 2 x y for $0 \le x \le 1, 0 \le y \le 1$ is the joint pdf of (X, Y). Test whether X and Y are independent? (7)
 - b) *X* is a normal random variable with mean 50 and standard deviation 10.Find *A* and *B* such that P[X < A] = 0.10 and P[X > B] = 0.05 (7)

MODULE III

- 15. a) Let X(t) = Bcos(50t + θ), where B and θ are independent random variables. B is a random variable with mean 0 and variance 1. θ is uniformly distributed in the interval [-π, π]. Find the mean and autocorrelation of the process.
 - b) Prove that inter arrival time of a Poisson process with parameter λ has an exponential distribution with mean $1/\lambda$. (7)

OR

- 16. a) Show that the random process $X(t) = Acos(\omega t + \theta)$ is WSS if A and ω are constants and θ is a uniformly distributed random variable in $(0,2\pi)$ (7)
 - b) Find the autocorrelation and average power of the random process with power spectral density $S_{XX}(\omega) = \begin{cases} \alpha & -B \le \omega \le B \\ 0 & otherwise \end{cases}$ (7)

MODULE IV

17. a) Using Lagrange's Interpolation method, find the polynomial f(x) to the data (7)

481A1

f(1) = 1, f(3) = 27, f(4) = 64 and hence find f(2).

b) Find Newton's backward difference form of interpolating polynomial for the data
 (7)

f(4) = 19, f(6) = 40, f(8) = 79, f(10) = 142.Hence interpolate f(9).

OR

18. a) Evaluate $\int_0^6 \frac{1}{1+x^2} dx$ with n = 6 by (a)Trapezoidal rule (b)Simpson's 1/3 rule

b) In the given data the values of y are consecutive terms of a series of which 23.6 is the sixth term. Find the first and tenth terms of the series

х	3	4	5	6	7	8	9
у	4.8	8.4	14.5	23.6	36.2	52.8	73.9

MODULE V

- 19. a) Evaluate y(0.1) using Runge-Kutta Fourth order method for the differential equation $\frac{dy}{dx} = e^x + y$ and y(0) = 0. (Take h = 0.1) (7)
 - b) Use the method of least squares to fit an equation of the form y = ax + b to the following data (

y(1) = 6, y(2) = 7, y(3) = 9, y(4) = 10, y(5) = 12OR

20. Use Gauss-Seidel method to solve the following system of equations

$$5x - y = 9$$

$$-x + 5y - z = 4$$

$$-y + 5z = -6$$
(14)

Page 3 of 3

(7)

(7)

(7)