Name:

Register No.:

D

SAINTGITS COLLEGE OF ENGINEERING (AUTONOMOUS)

(AFFILIATED TO APJ ABDUL KALAM TECHNOLOGICAL UNIVERSITY, THIRUVANANTHAPURAM)

FOURTH SEMESTER B.TECH DEGREE EXAMINATION (S), SEPT 2022

ELECTRICAL AND ELECTRONICS ENGINEERING

(2020 SCHEME)

Course Code : 20EET206

Course Name: Digital Electronics

Max. Marks : 100

Duration: 3 Hours

(3)

PART A

(Answer all questions. Each question carries 3 marks)

- 1. Convert the given decimal numbers to binary (i) 81.25 (ii) 99.75 (iii) 102.125
- 2. Which are the different types of parity codes used in modern digital systems?
- 3. Prove the second law of De Morgan's theorem.

.....

- 4. Convert the function Y = A'B + ABC to standard Sum of Products expression.
- 5. Implement a 4:1 multiplexer using a 2:1 multiplexer.
- 6. Draw the diagram of a 2-bit magnitude comparator.
- 7. If NOT gates, AND gates and JK flip flop ICs are available, how will you convert an UP counter to a DOWN counter?
- 8. State the differences between synchronous and asynchronous counters.
- 9. What are the differences between Moore and Mealy machines?
- 10. Justify that successive approximation ADC is the fastest ADC.

PART B

(Answer one full question from each module, each question carries 14 marks)

MODULE I

11.	a)	Write notes on any three number systems in digital electronics.	(9)	
	b)	Draw the internal diagram of a TTL NAND gate with totem pole output.	(5)	
OR				
12.	a)	Implement a two input EX-OR gate using NAND gates.	(9)	
	b)	Draw the internal diagram of a CMOS NOR gate.	(5)	
MODULE II				
13.	a)	Using K-Map, find the minimal POS expression if $Y = ABC + A'B'C + A'B'C' + A'BC$	(10)	
	b)	What is the difference between a full adder and a half adder?	(4)	

OR

- 14. a) Using K-Map, find the minimal SOP expression if Y = (A + B) (A'+B+C)(A'+B'+C') (A'+C) (11)
 - b) How will you convert an adder to a subtractor?

647A1

D

Total Pages: **2**

MODULE III

15.	Design a BCD to Seven segment decoder.	(14)			
OR					
16.	a) Implement the function Y = ABC + A'B'C' + AB'C + A'BC using 8: multiplexer	¹ (7)			
	b) Implement a 1:8 de-multiplexer using 1:4 de-multiplexers.	(7)			
MODULE IV					
17.	Design a 4-bit synchronous counter using MS JK flip-flops.	(14)			
OR					
18.	With neat diagram, explain the operation of a MOD10 asynchronous counte using MS JK flip-flops.	r (14)			
MODULE V					
19.	a) With neat diagrams, explain the working of a flash ADC.b) Write short notes on PLA and PAL.	(10) (4)			
OR					
20.	a) Design a 4-bit weighted resistor DAC with a resolution of 0.5 V.b) Write VHDL code for an AND gate.	(12) (2)			