Name:

SAINTGITS COLLEGE OF ENGINEERING (AUTONOMOUS)

(AFFILIATED TO APJ ABDUL KALAM TECHNOLOGICAL UNIVERSITY, THIRUVANANTHAPURAM)

SECOND SEMESTER B.TECH DEGREE EXAMINATION (S), SEPT 2022 (2020 SCHEME)

Course Code :	20MAT102	
Course Name:	Vector Calculus, Differential Equations and Transforms	
Max. Marks :	100	Duration: 3 Hours

PART A

(Answer all questions. Each question carries 3 marks)

- 1. Find the directional derivative of $f(x, y) = xe^{y}$ at (1,1) in the direction of – ve y axis
- Prove that $\overline{F} = (x + 3y) \hat{\iota} + (y 3z) \hat{j} + (x 2z) \hat{k}$ is solenoidal 2.
- 3. Evaluate by Green's theorem $\int_{C} y dx + x dy$ where C is the unit circle.
- 4. Evaluate $\iint_{\sigma} \bar{F} \cdot \hat{n} \, dS$ where $\bar{F} = ax \, \hat{i} + by \, \hat{j} + cz \, \hat{k}$ and σ is the surface of the sphere $x^2 + by \, \hat{j} + cz \, \hat{k}$ $y^2 + z^2 = 1$ using divergence theorem.
- Find the general solution of $\frac{d^3y}{dx^3} 2\frac{d^2y}{dx^2} \frac{dy}{dx} + 2y = 0$ Form an ODE from the basis e^{-2x} , e^{-3x} . 5.
- 6.
- Find the Laplace transform of $e^{-2t}cos^2t$ 7.
- Find the inverse Laplace transform of $\frac{4s+32}{s^2+16}$ 8.
- Find the Fourier cosine integral of $f(x) = \begin{cases} 1, & 0 < x < 1 \\ 0, & x > 1 \end{cases}$ 9.
- 10. Find the Fourier sine transform of $f(x) = e^{-|x|}$.

PART B

(Answer one full question from each module, each question carries 14 marks)

MODULE I

a) Find div \vec{F} and curl \vec{F} of $\vec{F}(x, y, z) = e^{xy}\hat{\imath} - 2\cos y\hat{\imath} + \sin^2 z\hat{k}$ 11. (7)

b) Show that $\int_{(0,0)}^{(3,2)} 3x^2 e^y dx + x^3 e^y dy$ is independent of the path and then find its (7) value.

OR

- 12. a) Evaluate the line integral $\int_{c} (xy + z^3) ds$ from (1,0,0) to (-1,0, π) along the helix (7) C that is represented by the parametric equations $x = \cos t$, $y = \sin t$, z = t
 - b) Find the work done by the force field $\vec{F} = \frac{1}{x^2 + v^2} \hat{i} + \frac{4}{x^2 + v^2} \hat{j}$ on a particle that (7)

Register No.:

782A1

moves along the curve C, where C is the part of the circle $x^2 + y^2 = 16$ in the first quadrant oriented counter clock wise from (4,0) to (0,4).

MODULE II

- 13. a) Evaluate $\oint_C x^2 y dx + (y + xy^2) dy$ where C is the boundary of the region (7)enclosed by $y = x^2$ and $x = y^2$ using Green's theorem
 - b) Find the mass of the lamina that is the portion of the cone $z = \sqrt{x^2 + y^2}$ (7) between z = 1 and z = 3 if the density function is $\rho(x, y, z) = x^2 z$

OR

- a) Use divergence theorem to find the outward flux of the vector field \overline{F} = 14. $(x^2 + y)\hat{\imath} + xy\hat{\jmath} - (2xz + y)\hat{k}$ across the surface σ of the tetrahedron bounded (7)by x + y + z = 2 and the coordinate planes.
 - b) Use Stoke's theorem to evaluate $\oint_C \overline{F} \cdot d\overline{r}$ where $\overline{F} = 2z \,\hat{\imath} + 3x \,\hat{\jmath} + 5y \,\hat{k}$ and C is the boundary of the paraboloid $z = 4 - x^2 - y^2$ above the XY plane with (7) upward orientation.

MODULE III

15. a) Solve
$$\frac{d^2y}{dx^2} + 4 \frac{dy}{dx} + 4y = e^{-x} \cos x$$
, using method of undetermined coefficients. (7)
b) Solve $x^2 \frac{d^2y}{dx^2} - 3x \frac{dy}{dx} + 10y = 0$ (7)

OR

16.	a)	Solve of $\frac{d^2y}{dx^2} + 4y = \cos 2x$ using method of variation of parameters.	(7)
	b)	Solve the initial value problem	(7)
		y''' - y'' + 100y' - 100y = 0, y(0) = 4; y'(0) = 11, y''(0) = -299	(7)

MODULE IV

17.	a)	Using Laplace transform, solve $y'' + 2y' - 3y = sint$, $y(0) = y'(0) = 0$	(7)
	b)	Using convolution theorem, find the inverse Laplace transform of $\frac{s}{(s^2+a^2)^2}$	(7)

OR

18. a) Find

ii

Α

i.
$$L^{-1}\left\{\frac{e^{-2s}}{s+3}\right\}$$
 (7)
ii. $L^{-1}\left\{\frac{-s+11}{s^2-2s-3}\right\}$

b) Using Laplace transform, solve $y'' + 3y' + 2y = \delta(t-1)$, (7) y(0) = y'(0) = 0

MODULE V

19. Find the Fourier integral representation of $f(x) = \begin{cases} 1 - x^2, & |x| \le 1 \\ 0, & |x| > 1 \end{cases}$ a) (7)

782A1

Α

Total Pages: **3**

b)
Find the Fourier cosine transform of
$$f(x) = \begin{cases} 1, & 0 < x < 1 \\ -1, & 1 < x < 2 \\ 0, & x > 2 \end{cases}$$
(7)

OR

20.	a)	Find the Fourier transform of $f(x) = \begin{cases} \\ \\ \\ \\ \\ \end{cases}$	$= \begin{cases} xe^{-x}, -1 < x < 0\\ 0, & otherwise \end{cases} $ (7)	7)
-----	----	---	---	----

b) Find the Fourier sine integral of
$$f(x) = \begin{cases} x, & 0 < x < a \\ 0, & x > a \end{cases}$$
 (7)