SAINTGITS COLLEGE OF ENGINEERING (AUTONOMOUS)
 (AFFILIATED TO APJ ABDUL KALAM TECHNOLOGICAL UNIVERSITY, THIRUVANANTHAPURAM) SECOND SEMESTER B.TECH DEGREE EXAMINATION (S), SEPT 2022 (2020 SCHEME)
 Course Code : 20MAT102
 Course Name: Vector Calculus, Differential Equations and Transforms
 Max. Marks : 100
 Duration: 3 Hours

PART A
 (Answer all questions. Each question carries 3 marks)

1. Find the directional derivative of $f(x, y)=x e^{y}$ at $(1,1)$ in the direction of -ve y axis
2. Prove that $\bar{F}=(x+3 y) \hat{\imath}+(y-3 z) \hat{\jmath}+(x-2 z) \hat{k}$ is solenoidal
3. Evaluate by Green's theorem $\int_{c} y d x+x d y$ where C is the unit circle.
4. Evaluate $\iint_{\sigma} \bar{F} \cdot \hat{n} d S$ where $\bar{F}=a x \hat{\imath}+b y \hat{\jmath}+c z \hat{k}$ and σ is the surface of the sphere $x^{2}+$ $y^{2}+z^{2}=1$ using divergence theorem.
5. Find the general solution of $\frac{d^{3} y}{d x^{3}}-2 \frac{d^{2} y}{d x^{2}}-\frac{d y}{d x}+2 y=0$
6. Form an ODE from the basis $e^{-2 x}, e^{-3 x}$.
7. Find the Laplace transform of $e^{-2 t} \cos ^{2} t$
8. Find the inverse Laplace transform of $\frac{4 s+32}{s^{2}+16}$
9. Find the Fourier cosine integral of $f(x)=\left\{\begin{array}{lr}1, & 0<x<1 \\ 0, & x>1\end{array}\right.$
10. Find the Fourier sine transform of $f(x)=e^{-|x|}$.

PART B
 (Answer one full question from each module, each question carries 14 marks)
 MODULE I

11. a) Find div \vec{F} and $\operatorname{curl} \vec{F}$ of $\vec{F}(x, y, z)=e^{x y} \hat{\imath}-2 \cos y \hat{\jmath}+\sin ^{2} z \hat{k}$
b) Show that $\int_{(0,0)}^{(3,2)} 3 x^{2} e^{y} d x+x^{3} e^{y} d y$ is independent of the path and then find its value.

OR

12. a) Evaluate the line integral $\int_{c}\left(x y+z^{3}\right)$ ds from $(1,0,0)$ to $(-1,0, \pi)$ along the helix C that is represented by the parametric equations $x=\cos t, y=\sin t, z=t$
b) Find the work done by the force field $\overrightarrow{\mathrm{F}}=\frac{1}{\mathrm{x}^{2}+\mathrm{y}^{2}} \hat{\imath}+\frac{4}{\mathrm{x}^{2}+\mathrm{y}^{2}} \hat{\jmath}$ on a particle that
moves along the curve C, where C is the part of the circle $x^{2}+y^{2}=16$ in the first quadrant oriented counter clock wise from $(4,0)$ to $(0,4)$.

MODULE II

13. a) Evaluate $\oint_{C} x^{2} y d x+\left(\mathrm{y}+x y^{2}\right) d y$ where C is the boundary of the region enclosed by $y=x^{2}$ and $x=y^{2}$ using Green's theorem
b) Find the mass of the lamina that is the portion of the cone $z=\sqrt{x^{2}+y^{2}}$ between $z=1$ and $z=3$ if the density function is $\rho(x, y, z)=x^{2} z$

OR

14. a) Use divergence theorem to find the outward flux of the vector field $\bar{F}=$ $\left(x^{2}+y\right) \hat{\imath}+x y \hat{\jmath}-(2 x z+y) \hat{k}$ across the surface σ of the tetrahedron bounded by $x+y+z=2$ and the coordinate planes.
b) Use Stoke's theorem to evaluate $\oint_{C} \bar{F} . d \bar{r}$ where $\bar{F}=2 z \hat{\imath}+3 x \hat{\jmath}+5 y \hat{k}$ and C is the boundary of the paraboloid $z=4-x^{2}-y^{2}$ above the XY plane with upward orientation.

MODULE III

15. a) Solve $\frac{d^{2} y}{d x^{2}}+4 \frac{d y}{d x}+4 y=e^{-x} \cos x$, using method of undetermined coefficients.
b) Solve $x^{2} \frac{d^{2} y}{d x^{2}}-3 x \frac{d y}{d x}+10 y=0$

OR

16. a) Solve of $\frac{d^{2} y}{d x^{2}}+4 y=\cos 2 x$ using method of variation of parameters.
b) Solve the initial value problem
$y^{\prime "}-y^{\prime \prime}+100 y^{\prime}-100 y=0, y(0)=4 ; y^{\prime}(0)=11, y^{\prime \prime}(0)=-299$

MODULE IV

17. a) Using Laplace transform, solve $y^{\prime \prime}+2 y^{\prime}-3 y=\operatorname{sint}, y(0)=y^{\prime}(0)=0$
b) Using convolution theorem, find the inverse Laplace transform of $\frac{s}{\left(s^{2}+a^{2}\right)^{2}}$

OR

18. a) Find

$$
\begin{array}{ll}
\text { i. } & L^{-1}\left\{\frac{e^{-2 s}}{s+3}\right\} \\
\text { ii. } & L^{-1}\left\{\frac{-s+11}{s^{2}-2 s-3}\right\}
\end{array}
$$

b) Using Laplace transform, solve $y^{\prime \prime}+3 y^{\prime}+2 y=\delta(t-1)$,

$$
\begin{equation*}
y(0)=y^{\prime}(0)=0 \tag{7}
\end{equation*}
$$

MODULE V

19. a) Find the Fourier integral representation of $f(x)= \begin{cases}1-x^{2}, & |x| \leq 1 \\ 0, & |x|>1\end{cases}$
b) Find the Fourier cosine transform of $f(x)=\left\{\begin{array}{lr}1, & 0<x<1 \\ -1, & 1<x<2 \\ 0, & x>2\end{array}\right.$

OR

20. a) Find the Fourier transform of $f(x)= \begin{cases}x e^{-x},-1<x<0 \\ 0, & \text { otherwise }\end{cases}$
b) Find the Fourier sine integral of $f(x)=\left\{\begin{array}{rr}x, & 0<x<a \\ 0, & x>a\end{array}\right.$
