D 647A4 Total Pages:2

Register No.: Name:

SAINTGITS COLLEGE OF ENGINEERING (AUTONOMOUS)

(AFFILIATED TO APJ ABDUL KALAM TECHNOLOGICAL UNIVERSITY, THIRUVANANTHAPURAM)

FOURTH SEMESTERB.TECH DEGREE EXAMINATION (Regular), JULY 2022 ELECTRICAL AND ELECTRONICS ENGINEERING (2020 SCHEME)

Course Code: 20EET206

Course Name: Digital Electronics

Max. Marks: 100 Duration: 3 Hours

PART A

(Answer all questions. Each question carries 3 marks)

- 1. Write the binary, octal and hexadecimal equivalents of 364.25
- 2. Write briefly about floating-point representation of binary numbers
- 3. What do you mean by standard form of a Boolean expression?
- 4. Draw the diagram of a 4-bit adder-subtractor?
- 5. What is the importance of a parity generator?
- 6. What is the difference between an encoder and a decoder?
- 7. Explain the excitation table of a JK flip-flop?
- 8. Draw the diagram of an asynchronous Mod 10 counter?
- 9. What are the limitations of a binary weighted resistor DAC?
- 10. Write the VHDL code for a half adder circuit?

PART B

(Answer one full question from each module, each question carries 14marks)

MODULE I

- 11. a) What is an excess-3 code? Explain with examples and mention its applications. (7)
 - b) With necessary examples, explain the addition of two 4-bit numbers. (7)

OR

- 12. a) Justify the term "Universal Logic Gates" with suitable example. (8)
 - b) Draw and explain the internal diagram of two input TTL NAND gate. (6)

MODULE II

- 13. a) Minimize the expression Y = ABC + A'B'C' + AB'C + A'B'C using K map (10)
 - b) Explain the truth table of a half subtractor?

OR

- 14. a) Minimize the expression Y = (A+B+C)(A'+B+C)(A'+B'+C) using K map (10)
 - b) What are the advantages of a Carry Look Ahead adder?

(4)

(4)

MODULE III

15.	a)	Implement a 4-bit magnitude comparator using two 2-bit magnitude comparators.	(8)
	b)	Explain an encoder with suitable example.	(6)
		OR	
16.	a)	Realize the function $Z = (A+B+C).(A+B+C').(A'+B+C).(A'+B+C)$ using 4:1 multiplexer	(9)
	b)	Realize a 1:8 demultiplexer using 1:4 demultiplexers.	(5)
		MODULE IV	
17.	a) b)	What are the different types of shift registers? Design a 3-bit asynchronous up counter.	(6) (8)
		OR	
18.		Design a 3-bit synchronous up/down counter using JK Flipflops.	(14)
		MODULE V	
19.	a) b)	What is a state machine? Explain different types of state machines. Using a PLA, realize the function ABC + A'BC + ABC' + A'B'C'.	(9) (5)
		OR	
20.	a) b)	What is a FPGA? What are the advantages of using a FPGA? What is VHDL? Explain structure of a VHDL program.	(9) (5)
