Name:

Register No.:

SAINTGITS COLLEGE OF ENGINEERING (AUTONOMOUS)

(AFFILIATED TO APJ ABDUL KALAM TECHNOLOGICAL UNIVERSITY, THIRUVANANTHAPURAM)

FOURTH SEMESTERB.TECH DEGREE EXAMINATION (Regular), JULY 2022

COMPUTER SCIENCE AND ENGINEERING (2020 SCHEME)

Course Code: 20MAT206

.....

Course Name: Graph Theory

Max. Marks: 100

PART A

(Answer all questions. Each question carries 3 marks)

- 1. Define Complete Graph. Draw a complete graph with 5 vertices.
- 2. Prove that it is impossible to have a group of nine people at a party such that each one knows exactly five of the others in the group.
- 3. Define Hamiltonian Graph. Give an example of a graph that has a Hamiltonian path but does not have Hamiltonian circuit.
- 4. Distinguish between reflexive digraph and transitive digraph.
- 5. Draw all labelled Tree with 3 vertices.
- 6. Define Spanning tree with example.
- 7. Define cut vertex of a graph. Draw a graph having 2 cut vertices
- 8. Define Planar graph with an example.
- 9. Define path matrix of a graph.
- 10. Define Chromatic number.

PART B

(Answer one full question from each module, each question carries 14 marks)

MODULE I

11.	a)	Define Walk, path and circuit in graph with help of an example.	(6)
-----	----	---	-----

b) Show that the number of odd degree vertices in a graph is always even. (8)

OR

- 12. a) If a graph has exactly two vertices of vertices of odd degree, then prove that there must be a path joining these two vertices. (6)
 - b) Prove that a simple graph with 'n' vertices and k components can have at most $\frac{(n-k)(n-k+1)}{2}$ edges. (8)

Duration: 3 Hours

894A3

MODULE II

А

b) Prove that a connected graph is Euler if and only if all vertices are of even degree. (8)

OR

14.	a)	Find the possible number of Hamiltonian circuits in a complete graph with 'n'	
		vertices, if 'n' is odd. Explain	(0)
	b)	Explain Travelling Salesman problem.	(8)

MODULE III

- 15. a) Draw a Spanning tree T of K_5 . Write the set of chords and branches of T. (6)
 - b) Prove or disprove : A tree with n vertices has n-1 edges

OR

- 16. a) Prove that in a Binary tree with 'n' vertices, the number of pendent vertices is p = $\frac{(n+1)}{2}$ (6)
 - b) Using Dijkstra's algorithm, Find the minimum spanning tree of the following graph.

MODULE IV

- 17. a) Prove that a connected planar graph with n vertices and e edges has e^{-n+2} (6) regions
 - b) Show that $K_{3,3}$ is non -planar

(8)

(8)

OR

- 18. a) Define vertex connectivity and edge connectivity. Show that the edge connectivity of a graph cannot exceed the edge connectivity . (6)
 - b) Show that a complete graph with 5 vertices is non-planar

(8)

894A3

MODULE V

19. a) Define incidence matrix of a graph. Find the incidence matrix of the following graph

b) Prove that every planar graph is 5- colorable.

OR

- 20. a) Explain four color problem using the concept of chromatic number. (6)
 - b) List the cycles and obtain the cycle matrix of the following graph.

(8)