SAINTGITS COLLEGE OF ENGINEERING (AUTONOMOUS)

(AFFILIATED TO APJ ABDUL KALAM TECHNOLOGICAL UNIVERSITY, THIRUVANANTHAPURAM)
FOURTH SEMESTERB.TECH DEGREE EXAMINATION (Regular), JULY 2022 COMPUTER SCIENCE AND ENGINEERING (2020 SCHEME)
Course Code: 20MAT206
Course Name: Graph Theory
Max. Marks: 100
Duration: 3 Hours

PART A
(Answer all questions. Each question carries 3 marks)

1. Define Complete Graph. Draw a complete graph with 5 vertices.
2. Prove that it is impossible to have a group of nine people at a party such that each one knows exactly five of the others in the group.
3. Define Hamiltonian Graph. Give an example of a graph that has a Hamiltonian path but does not have Hamiltonian circuit.
4. Distinguish between reflexive digraph and transitive digraph.
5. Draw all labelled Tree with 3 vertices.
6. Define Spanning tree with example.
7. Define cut vertex of a graph. Draw a graph having 2 cut vertices
8. Define Planar graph with an example.
9. Define path matrix of a graph.
10. Define Chromatic number.

PART B

(Answer one full question from each module, each question carries 14 marks)

MODULE I

11. a) Define Walk, path and circuit in graph with help of an example.
b) Show that the number of odd degree vertices in a graph is always even.

OR
12. a) If a graph has exactly two vertices of vertices of odd degree, then prove that there must be a path joining these two vertices.
b) Prove that a simple graph with ' n ' vertices and k components can have atmost $\frac{(n-k)(n-k+1)}{2}$ edges.

MODULE II

13. a) Find the union, intersection and Ring sum of the following graphs.

(a) G

(b) H
b) Prove that a connected graph is Euler if and only if all vertices are of even degree.

OR

14. a) Find the possible number of Hamiltonian circuits in a complete graph with ' n ' vertices, if ' n ' is odd. Explain
b) Explain Travelling Salesman problem.

MODULE III

15. a) Draw a Spanning tree T of K_{5}. Write the set of chords and branches of T .
b) Prove or disprove : A tree with n vertices has $\mathrm{n}-1$ edges

OR
16. a) Prove that in a Binary tree with ' n ' vertices, the number of pendent vertices is p $=\frac{(n+1)}{2}$
b) Using Dijkstra's algorithm, Find the minimum spanning tree of the following graph.

MODULE IV

17. a) Prove that a connected planar graph with n vertices and e edges has $e-n+2$ regions
b) Show that $K_{3,3}$ is non -planar connectivity of a graph cannot exceed the edge connectivity .
b) Show that a complete graph with 5 vertices is non-planar

MODULE V

19. a) Define incidence matrix of a graph. Find the incidence matrix of the following graph

b) Prove that every planar graph is 5 - colorable.

OR

20. a) Explain four color problem using the concept of chromatic number.
b) List the cycles and obtain the cycle matrix of the following graph.

