Name:

Duration: 3 Hours

Μ

Register No.:

SAINTGITS COLLEGE OF ENGINEERING (AUTONOMOUS)

(AFFILIATED TO APJ ABDUL KALAM TECHNOLOGICAL UNIVERSITY, THIRUVANANTHAPURAM) FOURTH SEMESTER B.TECH DEGREE EXAMINATION (Regular), JULY 2022

(2020 SCHEME)

Course Code :	20CST284
Course Name:	Mathematics for Machine Learning
Max. Marks :	100

PART A

(Answer all questions. Each question carries 3 marks)

- Show that the vectors $\begin{bmatrix} 0\\1\\-1 \end{bmatrix}$, $\begin{bmatrix} -1\\0\\-1 \end{bmatrix}$, $\begin{bmatrix} 3\\1\\3 \end{bmatrix}$ are linearly independent 1.
- Verify the mapping $\phi : \mathbb{R}^2 \to \mathbb{C}$, where $\phi(x) = x_1 + i x_2$ is a linear transformation 2.
- Does these vectors $\begin{bmatrix} \frac{1}{\sqrt{2}} & \frac{1}{\sqrt{2}} \end{bmatrix}^T$, $\begin{bmatrix} \frac{1}{\sqrt{2}} & \frac{-1}{\sqrt{2}} \end{bmatrix}^T$ form an orthonormal basis 3.
- Find the Eigen values of A^{-1} and A^{4} , without using Characteristic equation. If one of the 4. Eigen value of $A = \begin{bmatrix} 1 & 1 & 3 \\ 1 & 5 & 1 \\ 3 & 1 & 1 \end{bmatrix}$ is 3.
- Express the polynomial $2x^3 + 7x^2 + x 6$ in powers of (x 2), using Taylor series 5. Expansion.
- 6. Find the gradient and its magnitude at the point (1,2,0) for the scalar function $f(x, y, z) = x^3 + 5y^2 - z^3$.
- 7. Explain Bayes theorem and its uses
- 8. Experiment of rolling 6 dices for 729 times. How many times do you expect at least three dice to show a five or a six?
- Find the maximum and minimum value of f(x, y) = 5x 3y, subject to $x^2 + y^2 = 136$ 9.
- 10. Write the Lagrangian dual of , Min Z = $7x_1 + 5x_2$ Subject to the constraints: $x_1 + x_2 \le 20$, $3x_1 - 4x_2 \le 8$, $5x_1 + 3x_2 \le 10$, $x_2 \le 10$ 5, $x_1 \leq 7$

PART B

(Answer one full question from each module, each question carries 14 marks)

MODULE I

11.	a)	Solve the system of equations using Gauss Elimination method	(7)
		x + 2y + z = 3, $2x + 3y + 2z = 5$, $3x - 5y + 5z = 2$, $3x + 9y - z = 4$	()
	b)	Let \emptyset be a Linear transformation from R^3 to R^2 , where $\emptyset x = Ax$,	

$$A_{\emptyset} = \begin{bmatrix} 1 & 1 & 0 \\ -1 & 0 & 1 \end{bmatrix}, \text{ find } Ker(\emptyset), ran(\emptyset) \text{ and its dimensions}$$
(7)

OR

Page 1 of 3

619A2

(6)

- a) Find the inverse of the matrix $A = \begin{bmatrix} 1 & 1 & 0 & 1 \\ 1 & 0 & 1 & 0 \\ 0 & 1 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix}$, using Gaussian method (6) b) Define vector space. Is *K* a vector space where *K* is the set of all ordered pairs
- b) Define vector space. Is V a vector space, where V is the set of all ordered pairs (x, y) with x, y ∈ R. Define: ā + b̄ = (x₁x₂, y₁y₂) and αā̄ = (αx₁, αy₁), where ā̄ = (x₁, y₁), b̄ = (x₂, y₂) ∈ V.

MODULE II

13. a) Decompose
$$A = \begin{bmatrix} 4 & 2 & -2 \\ 2 & 5 & 0 \\ -2 & 0 & 3 \end{bmatrix}$$
 using Eigen Decomposition (7)

b) Solve using Cholesky decomposition 25x + 15y - 5z = 35, 15x + 18y = 33, -5x + 11z = 6.(7)

OR

14. a) Find the Singular value decomposition of $A = \begin{bmatrix} 1 & 0 & 1 \\ -2 & 1 & 0 \end{bmatrix}$ (10) b) Using Gram-Schmidt Orthogonalization to orthogonalize the vectors $\begin{bmatrix} 2 \\ -1 \\ 2 \end{bmatrix}, \begin{bmatrix} -1 \\ 2 \\ 2 \end{bmatrix}, \begin{bmatrix} 2 \\ 2 \\ 1 \end{bmatrix}$ (4)

MODULE III

15.	a)	Expand $f(x, y) = e^x siny$ in powers of x and y using Taylor's theorem	(8)
	b)	Find the local linear approximation of $f(x, y, z) = xyz$ at the point (1,2,3).	(6)

OR

16.	a)	Locate all relative extrema and saddle points of $f(x, y) = 4xy - x^4 - y^4$.	(8)
	b)	Explain the process of Automatic differentiation with an example	(6)

MODULE IV

17. a) The joint probability density function of a bivariate discrete random variable (X, Y) is given by the table

	0 3		
X	$x_1 = 1$	$x_2 = 2$	$x_3 = 3$
Y 🔨			
$y_1 = 1$	0.1	0.1	0.2
<i>y</i> ₂ = 2	0.2	0.3	0.1

1. Find the marginal probability density function of *X* and *Y*

2. Find E(XY) and Conditional distribution $P(X/Y = y_1)$

b) If
$$X \sim \mathcal{N}(\mu = 20, \sigma = 5)$$
, find the probability that

1.
$$P(X > 23)$$

2. P(|X - 20| > 5)

OR

18. a) A random variable X has the following probability density function (8)

M

12.

(6)

Х	ζ	0	1	2	3	4	5	6	7
f((x)	0	k	2 <i>k</i>	2 <i>k</i>	3 <i>k</i>	k ²	$2k^{2}$	7k ²
									+k

- 1. Find the value of k
- 2. Find p(0 < X < 5)
- 3. Find $p(X \ge 6)$
- b) Out of 1000 families with four children each. How many would be expected to have
 - 1. 2 Boys and 2 Girls
 - 2. No Girl child

MODULE V

19. a)	a)	Solve the linear programming problem graphically			
		$\operatorname{Max} Z = 2x + 3y$	(7)		
		s.t.c, $x + y \le 30$, $y \ge 3$, $0 \le y \le 12$, $x - y \ge 0$, $0 \le x \le 20$, $x, y \ge 0$			
	b)	Solve L.P.P using simplex method			
		$\operatorname{Max} Z = 5x + 3y$	(7)		
		s.t.c, $x + y \le 2$, $5x + 2y \le 10$, $3x + 8y \le 12$, $x, y \ge 0$			
		OR			

20. a) Find the min $f(x, y) = x^2 - 2x + 1 + y^2$, choose the starting point $x_0 = \begin{bmatrix} 0 \\ 0 \end{bmatrix}$, using gradient descent method (7)

b) Find the Hessian matrix of *f*, Also check whether the function *f* is concave or convex, where $f(x_1, x_2, x_3) = (x_1 - x_2)^2 + 2x_3^2$ (7)