G 593

(Pages: 2)

Reg.	No
NT	

B.TECH. DEGREE EXAMINATION, MAY 2014

First and Second Semesters

EN 010 102—ENGINEERING PHYSICS

(New Scheme—2010 Admission onwards—Regular/Improvement/Supplementary)

[Common for all branches]

Time: Three Hours

Maximum: 100 Marks

Part A

Answer all questions.

Each question carries 3 marks.

- 1. Enlist the applications of lasers in medicine.
- 2. What is meant by Silsbee effect?
- 3. Define atomic packing factor. What is its unit?
- 4. Classify shape memory alloys.
- 5. Define piezoelectric effect. Draw a diagram to show piezoelectric axes of quartz.

 $(5 \times 3 = 15 \text{ marks})$

Part B

Answer all questions.

Each question carries 5 marks.

- 6. Explain the principle of laser and hence explain the importance of metastable state.
- 7. What is meant by ac Josephon effect? Derive the expression for ac supercurrent through a Josephson junction.
- 8. Prove the relationship between the edge of the unit cell and the atomic radius for the bcc and fcc lattices.
- 9. Give the details of Rayleigh scattering.
- 10. Write a short note on liquid crystals and their applications.

 $(5 \times 5 = 25 \text{ marks})$

Turn over

Part C

Answer all questions.

Each question carries 12 marks.

11. Describe the construction and working of ruby laser. What are its (i) merits; (ii) demerits; (iii)

(9 + 1 + 1 + 1 = 12 marks)

Or

12. Explain (a) the principle of holography; (b) Method of recording a hologram; (c) Reconstruction of image from a hologram; (iv) Why a laser beam only can be used for recoding and reconstructing

(1 + 5 + 4 + 3 = 12 marks)

- 13. (a) Explain the stability of nanoclusters in relation with magic number.
 - (b) Discuss the electric and magnetic properties of nanomaterials.

(6 + 6 = 12 marks)

Or

- 14. (a) Explain isotope effect and flux quantization.
 - (b) Give a comparative treatment between type I and type II superconductors.

(6 + 6 = 12 marks)

· 15. Give the details of crystal systems and related Bravais lattices.

Or

- 16. Discuss the structural, electrical, magnetic and chemical properties of metallic glasses.
- 17. Explain the principle, construction and working and merits and demerits of magnetostriction

Or

18. What is meant by Raman effect? Explain the details of experimental study of Raman effect.

(2 + 10 = 12 marks)

- 19. (a) Define acceptance angle and Numerical Aperture.
 - (b) Derive an expression for N.A.
 - (c) What are the differences between Step Index multimode fibres and GRIN fibres.

(3 + 5 + 4 = 12 marks)

20. Explain the working of any three optical fibre sensors with suitable block diagrams.

 $[5 \times 12 = 60 \text{ marks}]$