SAINTGITS COLLEGE OF ENGINEERING (AUTONOMOUS)

(AFFILIATED TO APJ ABDUL KALAM TECHNOLOGICAL UNIVERSITY, THIRUVANANTHAPURAM)
FOURTH SEMESTERB.TECH DEGREE EXAMINATION (Regular), JULY 2022
ELECTRONICS AND COMMUNICATION ENGINEERING (2020 SCHEME)
Course Code: 20ECT204
Course Name: Signals and Systems
Max. Marks: 100
Duration: 3 Hours

PART A
 (Answer all questions. Each question carries 3 marks)

1. Determine energy of the signal $x(t)=e^{-2 t} u(t)$
2. Check if the signal below is periodic. If so, find the fundamental period.

$$
\mathrm{x}[\mathrm{n}]=\sin \left(\frac{2 \pi n}{5}\right)+\cos \left(\frac{2 \pi n}{3}\right) .
$$

3. Perform linear convolution of signals $x_{1}[\mathrm{n}]=[2,2,2,2]$ and $x_{2}[\mathrm{n}]=[1,1,1,1]$
4. Check the causality and stability of the LTI system with impulse response

$$
\mathrm{h}(\mathrm{t})=e^{-2 t} \mathbf{u}(\mathrm{t}+2)
$$

5. State the conditions for convergence of Fourier series.
6. Evaluate the Fourier transform of $x(t)=\operatorname{sgn}(t)$. Plot magnitude and phase response.
7. Find Laplace transform of

$$
\mathrm{x}(\mathrm{t})=e^{-2 t} \mathrm{u}(\mathrm{t})+e^{-3 t} \mathrm{u}(\mathrm{t})
$$

8. What is aliasing? When does aliasing occur?
9. Find Z transform of

$$
\mathrm{x}[\mathrm{n}]=\mathrm{n} a^{n-1} \mathrm{u}[\mathrm{n}]
$$

10. State Parseval's theorem for DTFT.

$$
\begin{align*}
& \text { PART B } \\
& \text { (Answer one full question from each module, each question carries 14marks) } \\
& \text { MODULE I } \tag{7}
\end{align*}
$$

11. a) Check whether the system, $y(t)=x^{2}(2 t)$ is
(i) Linear (ii) Time-Invariant (iii) Causal (iv) Stable.
b) State superposition principle for linearity of system. Determine whether the
following system is linear.

$$
\begin{equation*}
\frac{d^{2}}{d t^{2}} \mathrm{y}(\mathrm{t})+3 \operatorname{ty}(\mathrm{t})=\frac{t^{2}}{2} \mathrm{x}(\mathrm{t}) \tag{7}
\end{equation*}
$$

OR

12. a) Determine if the following signals are energy signals, power signals or neither. Calculate the total energy and total average power for all signals.
(i) $\mathrm{x}(\mathrm{t})=(-0.5)^{t} \mathrm{u}(\mathrm{t})$
(ii) $x(t)=A \sin \left(\omega_{0} t+\theta\right)$
(iii) $\mathrm{x}[\mathrm{n}]=\mathrm{u}[\mathrm{n}]$
b) Given $x(t)=u(t+1)+u(t-1)-u(t-2)-u(t-4)$. Plot
(i) $x(t)$
(ii) $x(t-3)$
(iii) $\mathrm{x}(2 \mathrm{t})$
(iv) $x(2 t-3)$

MODULE II

13. a) Compute and plot the autocorrelation of the signal $\mathrm{x}(\mathrm{t})=\mathrm{A} \cos \left(\omega_{0} t+\theta\right)$,
where θ is a constant between 0 and 2π.
b) Evaluate the continuous time convolution integral for the following with proper plots.

$$
\begin{array}{r}
\mathrm{y}(\mathrm{t})=\{\mathrm{u}(\mathrm{t})-\mathrm{u}(\mathrm{t}-2)\}^{*} \mathrm{u}(\mathrm{t}) . \\
\text { OR }
\end{array}
$$

14. a) Find the output of a discrete LTI system described by the impulse response

$$
\left.\begin{array}{c}
h[n]=\left[\begin{array}{cc}
2-4 & 2
\end{array}\right] \text {, to the input } x[n]=\left[\begin{array}{ccc}
1 & 2 & 3
\end{array} 21\right.
\end{array}\right]
$$

b) Find whether the following systems with impulse responses $h(t)$ are stable or not.
(i) $\mathrm{e}^{-3 t} u(t-1)$
(ii) $\mathrm{te}^{-t} u(\mathrm{t})$
(iii) $e^{-t} \cos 2 t u(t)$.

MODULE III

15. a) Find the trigonometric Fourier Series of the given continuous time square wave $\mathrm{x}(\mathrm{t})$. Plot the magnitude and phase spectra.

b) Find the inverse Fourier transform of the following signals.
(i) $1 / j \omega(j \omega+1)+2 \pi \delta(\omega)$
(ii) $2 \pi \delta(\omega)+\pi \delta(\omega-4 \pi)+\pi \delta(\omega+4 \pi)$

OR

16.

a) Find the Fourier Transform of the following signal $x(t)$.

b) Find the CTFT of the given signal $\mathrm{x}(\mathrm{t})$ using an appropriate property. State and prove the property used.

$$
x(t)=t e^{-a t} u(t)
$$

MODULE IV

17.

a) State and prove the sampling theorem for low pass signals.
b) Find the Nyquist rate and Nyquist interval for the signals (a) sinc (100 $\pi \mathrm{t}$) and $b) \operatorname{sinc}(100 \pi t)+\operatorname{sinc}(50 \pi t)$.

OR

18. a) Write the equation for Laplace transform. What is ROC of Laplace transform? State any 5 properties of ROC.
b) Explain the relationship between the Fourier transform \& Laplace transform.

MODULE V

19. a) Evaluate the inverse Z-Transform by partial fraction method for the given X(z).

$$
\begin{equation*}
X(z)=\frac{3-\frac{5}{6} z^{-1}}{\left(1-\frac{1}{4} z^{-1}\right)\left(1-\frac{1}{3} z^{-1}\right)}, \quad|z|>\frac{1}{3} \tag{7}
\end{equation*}
$$

b) Find the DTFT of $x[n]=u[n]-u[n-N]$.

OR
20. a) A causal discrete-time LTI system is described by

$$
\begin{equation*}
\mathrm{y}[\mathrm{n}]-0.75 \mathrm{y}[\mathrm{n}-1]+0.125 \mathrm{y}[\mathrm{n}-2]=\mathrm{x}[\mathrm{n}] . \tag{10}
\end{equation*}
$$

where $\mathrm{x}[\mathrm{n}]$ and $\mathrm{y}[\mathrm{n}]$ are the input and output of the system respectively.
(a) Determine the system function $\mathrm{H}(\mathrm{z})$.
(b) Find the impulse response $\mathrm{h}[\mathrm{n}]$ of the system.
(c) Find the step response $\mathrm{s}[\mathrm{n}]$ of the system.
b) State any four properties of Z transform.

