Name:

SAINTGITS COLLEGE OF ENGINEERING (AUTONOMOUS)

(AFFILIATED TO APJ ABDUL KALAM TECHNOLOGICAL UNIVERSITY, THIRUVANANTHAPURAM)

SECOND SEMESTER M.TECH DEGREE EXAMINATION (Regular), JULY 2022

TELECOMMUNICATION ENGINEERING

(2021 Scheme)

Course Code: 21TE203

Course Name: Wireless Communication Networks

Max. Marks: 60

Register No.:

PART A

(Answer all questions. Each question carries 3 marks)

- 1. Summarize the diffraction mechanism of wave propagation in mobile communication.
- Define coherence time and coherence bandwidth. 2.
- 3. Explain the near-far problem associated with CDMA communication systems.
- Draw the block diagram of a multicarrier transmitter and receiver. 4.
- Illustrate the requirements for LTE. 5.
- Explain the cellular concept for LTE. 6.
- 7. What are smart antennas? Explain its significance?
- Draw and explain the V-BLAST architecture for MIMO channels. 8.

PART B

(Answer one full question from each module, each question carries 6 marks)

MODULE I

9. Illustrate two ray ground reflection model.

OR

10. Calculate the received power at a distance of 3km from the transmitter if the path loss (6) exponent is 4. Assume the transmitting power of 4W at 800 MHz, a shadow effect of 10.5dBm and the power at reference distance ($d_0=100m$) of -32 dB. What is the allowable path loss?

MODULE II

11. Describe the need for diversity? List and explain different diversity techniques. (6)

OR

12. Derive the probability of error under a fading channel. (6)

MODULE III

13. Analyze the performance of CDMA downlink with multiple users. (6)

(6)

Duration: 3 Hours

631A1

OR

14. A spread spectrum communication system has the following parameters. PN sequence (6) chip duration 1µs, information bit duration 4.095ms. Find jamming margin, processing gain and length of the chip sequence. Given $E_b/N_0=10$.

MODULE IV

15. Describe Single-Carrier Frequency Division for multiple access with transmitter and (6) receiver.

OR

16. Explain OFDM transmitter and receiver with cyclic prefix. (6)

MODULE V

- 17. Illustrate downlink physical data and control channels in LTE. (6)OR
- 18. Discuss the process of synchronization and cell search in LTE. (6)

MODULE VI

19. Interpret the parallel decomposition of the MIMO channel. (6)

OR

Find the equivalent parallel channel model for a MIMO channel with channel gain (6) 20. [0, 1, 0, 3, 0, 7]

matrix H = $\begin{bmatrix} 0.1 & 0.3 & 0.7 \\ 0.5 & 0.4 & 0.1 \\ 0.2 & 0.6 & 0.8 \end{bmatrix}$

С

Page 2 of 2