Name:

3

SAINTGITS COLLEGE OF ENGINEERING (AUTONOMOUS)

(AFFILIATED TO APJ ABDUL KALAM TECHNOLOGICAL UNIVERSITY, THIRUVANANTHAPURAM) SECOND SEMESTER M.TECH DEGREE EXAMINATION (Regular), JULY 2022

(2021	Scheme)
(,

Course Code: 21MD204-A

Course Name: Numerical Methods

Max. Marks: 60

PART A

(Answer all questions. Each question carries 3 marks)

1. Find a real root between 3 and 4 of $2x - \log_{10} x = 7$ correct to four decimal places using iteration method. [Choose $x_0 = 3.6$]

Time t

seconds

1

5

2. Solve the following system of equations by Gauss Seidel method

$$3x + y = 11$$

$$2x + 5y = 16$$

Temperature T⁰C

10

15

20

3. Using linear interpolation, find T, at t = 4.

4. Use Trapezoidal rule to evaluate \int_0^1	$^{1}x^{3}dx$ considering 5 subintervals.
--	---

- 5. Given $\frac{dy}{dx} = 1 y$ with y = 0 for x = 0. Find y approximately for x = 0.1 by Euler's method.
- 6. Write down the formulas for the fourth order Runge Kutta method.
- 7. What is the classification of the equation $(1 + x^2)u_{xx} + (5 + 2x^2)u_{xt} + (4 + x^2)u_{tt} = 0$.
- 8. What is the classification of the equation $y^2u_{xx} 2xyu_{xy} + x^2u_{yy} + 2u_x 3u = 0$.

PART B

(Answer one full question from each module, each question carries 6 marks)

MODULE I

9. Find a real root of the equation $x^3 - 4x - 9 = 0$ correct to four decimal places by Regula – Falsi method. (6)

OR

Register No.:

Duration: 3 Hours

624A2

10. Using Newton Raphson Method, find a real root of the equation $x^3 - 3x - 5 = 0$ (6) correct to four decimal places.

MODULE II

11. Use gauss elimination to solve the system

$$2x + y + z = 10$$

$$3x + 2y + 3z = 18$$

$$x + 4y + 9z = 16$$
(6)

OR

12. Solve using relaxation method

$$5x + 2y + z = -12-x + 4y + 2z = 202x - 3y + 10z = 3$$
(6)

MODULE III

13. Using Newton's forward formula, find f(1.6) from the following table.

Х	1	1.4	1.8	2.2
у	3.49	4.82	5.96	6.5

OR

14. Find the curve of best fit of the type $y = ae^{bx}$ to the following data by the method of least squares:

х	1	5	7	9	12
у	10	15	12	15	21

MODULE IV

15. The table given below reveals the velocity v of a body during the time t specified. Find its acceleration at t = 1.1

Γ	t	1.0	1.1	1.2	1.3	1.4
	v	43.1	47.7	52.1	56.4	60.8

OR

16. A train is moving at the speed of 30 m/sec. Suddenly breaks are applied. The speed of the train per second after t seconds is given by

						-	-			
Time (t)										
Speed (v)	30	24	19	16	13	11	10	8	7	5

Apply Trapezoidal rule and Simpson's three – eighth rule to determine the distance moved by the train in 45 seconds.

MODULE V

17. Given that $\frac{dy}{dx} = \log_{10}(x+y)$ with the initial condition that y = 1 when x = 0. Find y for x = 0.2 and x = 0.5 using Euler's modified formula. (6)

OR

Total Pages: **3**

 \sim

624A2

18. Given $\frac{dy}{dx} = y - x$, y(0) = 2. Find y(0.1) and y(0.2) correct to four decimal places using Runge – Kutta Method. (6)

MODULE VI

19. Find the dominant eigen value of $A = \begin{bmatrix} 1 & 6 & 1 \\ 1 & 2 & 0 \\ 0 & 0 & 3 \end{bmatrix}$ and the corresponding eigen (6) vector.

OR

20. Solve the partial differential equation $\nabla^2 u = -10(x^2 + y^2 + 10)$ over the square with sides x = 0 = y, x = 3 = y with u = 0 on the boundary and mesh length = (6) 1.

Total Pages:

3