SAINTGITS COLLEGE OF ENGINEERING (AUTONOMOUS)

(AFFILIATED TO APJ ABDUL KALAM TECHNOLOGICAL UNIVERSITY, THIRUVANANTHAPURAM)
SECOND SEMESTER M.TECH DEGREE EXAMINATION (Regular), JULY 2022

		(2021 Scheme)	
Course Code:	21MD204-A		
Course Name:	Numerical Methods		
Max. Marks:	60	Duration: 3 Hours	

PART A
 (Answer all questions. Each question carries 3 marks)

1. Find a real root between 3 and 4 of $2 x-\log _{10} x=7$ correct to four decimal places using iteration method. [Choose $x_{0}=3.6$]
2. Solve the following system of equations by Gauss Seidel method

$$
\begin{gathered}
3 x+y=11 \\
2 x+5 y=16
\end{gathered}
$$

3. Using linear interpolation, find T, at $t=4$.

Time t seconds	Temperature $\mathrm{T}^{0} \mathrm{C}$
1	10
3	15
5	20

4. Use Trapezoidal rule to evaluate $\int_{0}^{1} x^{3} d x$ considering 5 subintervals.
5. Given $\frac{d y}{d x}=1-y$ with $y=0$ for $x=0$. Find y approximately for $x=0.1$ by Euler's method.
6. Write down the formulas for the fourth order Runge - Kutta method.
7. What is the classification of the equation $\left(1+x^{2}\right) u_{x x}+\left(5+2 x^{2}\right) u_{x t}+\left(4+x^{2}\right) u_{t t}=0$.
8. What is the classification of the equation $y^{2} u_{x x}-2 x y u_{x y}+x^{2} u_{y y}+2 u_{x}-3 u=0$.

PART B
 (Answer one full question from each module, each question carries 6 marks)
 MODULE I

9. Find a real root of the equation $x^{3}-4 x-9=0$ correct to four decimal places by Regula - Falsi method.
10. Using Newton Raphson Method, find a real root of the equation $x^{3}-3 x-5=0$ correct to four decimal places.

MODULE II

11. Use gauss elimination to solve the system

$$
\begin{gathered}
2 x+y+z=10 \\
3 x+2 y+3 z=18 \\
x+4 y+9 z=16 \\
\text { OR }
\end{gathered}
$$

12. Solve using relaxation method

$$
\begin{gather*}
5 x+2 y+z=-12 \tag{6}\\
-x+4 y+2 z=20 \\
2 x-3 y+10 z=3
\end{gather*}
$$

MODULE III

13. Using Newton's forward formula, find $f(1.6)$ from the following table.

x	1	1.4	1.8	2.2
y	3.49	4.82	5.96	6.5

OR
14. Find the curve of best fit of the type $y=a e^{b x}$ to the following data by the method of least squares:

x	1	5	7	9	12
y	10	15	12	15	21

MODULE IV

15. The table given below reveals the velocity v of a body during the time t specified. Find its acceleration at $t=1.1$

t	1.0	1.1	1.2	1.3	1.4
v	43.1	47.7	52.1	56.4	60.8

OR

16. A train is moving at the speed of $30 \mathrm{~m} / \mathrm{sec}$. Suddenly breaks are applied. The speed of the train per second after t seconds is given by

Time (t)	0	5	10	15	20	25	30	35	40	45
Speed (v)	30	24	19	16	13	11	10	8	7	5

Apply Trapezoidal rule and Simpson's three - eighth rule to determine the distance moved by the train in 45 seconds.

MODULE V

17. Given that $\frac{d y}{d x}=\log _{10}(x+y)$ with the initial condition that $y=1$ when $x=0$. Find y for $x=0.2$ and $x=0.5$ using Euler's modified formula.
18. Given $\frac{d y}{d x}=y-x, y(0)=2$. Find $y(0.1)$ and $y(0.2)$ correct to four decimal places using Runge - Kutta Method.

MODULE VI

19. Find the dominant eigen value of $A=\left[\begin{array}{lll}1 & 6 & 1 \\ 1 & 2 & 0 \\ 0 & 0 & 3\end{array}\right]$ and the corresponding eigen vector.

OR

20. Solve the partial differential equation $\nabla^{2} u=-10\left(x^{2}+y^{2}+10\right)$ over the square with sides $x=0=y, x=3=y$ with $u=0$ on the boundary and mesh length $=$ 1.
