Register No.:

Name:

SAINTGITS COLLEGE OF ENGINEERING (AUTONOMOUS)

(AFFILIATED TO APJ ABDUL KALAM TECHNOLOGICAL UNIVERSITY, THIRUVANANTHAPURAM)

SECOND SEMESTER M.TECH DEGREE EXAMINATION (Regular), JULY 2022

COMPUTER SCIENCE AND SYSTEMS ENGINEERING

(2021 Scheme)

Course Code: 21SE203

Course Name: Automata Theory and Computability

Max. Marks: 60

Duration: 3 Hours

PART A

(Answer all questions. Each question carries 3 marks)

- 1. Design an NFA for a binary number where the first and the last digits are same.
- 2. Briefly explain Myhill Nerode Relations
- 3. Is the grammar $\{E \rightarrow E + E | E E | id\}$ ambiguous? Justify your answer.
- 4. Compare recursive and recursively enumerable languages
- 5. Discuss time complexity of a Turing Machine
- 6. Differentiate Decidable and Undecidable Problems.
- 7. Explain Tractable and intractable problems.
- 8. Define NP Completeness. Give examples for NP Complete Problems

PART B

(Answer one full question from each module, each question carries 6 marks)

MODULE I

9. NFA *N* for the following language *L*. *L* = {x ∈ (a, b)* | the second last symbol in x is a} (6)
Obtain the DFA *D* equivalent to *N* by applying the subset construction algorithm.

OR

10. Show that regular languages are closed under union, intersection and complement (6)

MODULE II

11.	a)	Design an ϵ -NFA for the regular expression (0+1)*01	(4)
	b)	Write a Regular Expression for the language:	(0)

 $L = \{x \in (0,1)^* | \text{ there are no consecutive 1's in x} \}$ (2)

OR

12. Using pumping lemma for regular languages, prove that the following given language is not regular. (6) $L = \{a^n b^n \mid n \ge 0\}$

701A2

С

MODULE III

13.	Construct a grammar in Greibach normal form equivalent to the grammar S \rightarrow A	
	$ a, A \rightarrow SS b$	(0)

OR

14.	a)	Explain the different methods by which a PDA accepts a language.	(2)
	b)	Design a PDA for the language	(4)
		L = { wcw ^R w \in (0,1)* and w ^R is the reverse of w }	(4)

MODULE IV

15. Design a Turing machine to identify the strings belong to the language $L = \{ww^R | w \in (0,1)^* \text{ and } w^R \text{ is the reverse of } w\}.$ (6)

OR

16. Design a TM to find the sum of two numbers m and n. Assume that initially the tape contains m number of 0s followed by # followed by n number of 0s. (6)

MODULE V

17.	Show that the halting problem of Turing	machine is Undecidable. (6	5)

OR

18. Using Diagonalization principle, prove that the set of real numbers between 0 and 1 is uncountable. (6)

MODULE VI

	b)	Explain Polynomial time reduction with an example.	(3)
		OR	

20. Discuss Non-Trivial Property? Give the definition of Rice theorem. (6)