SAINTGITS COLLEGE OF ENGINEERING (AUTONOMOUS)
 (AFFILIATED TO APJ ABDUL KALAM TECHNOLOGICAL UNIVERSITY, THIRUVANANTHAPURAM)
 SECOND SEMESTER M.TECH DEGREE EXAMINATION (Regular), JULY 2022 COMPUTER SCIENCE AND SYSTEMS ENGINEERING (2021 Scheme)
 Course Code: 21SE203
 Course Name: Automata Theory and Computability
 Max. Marks: 60
 Duration: 3 Hours

PART A
 (Answer all questions. Each question carries 3 marks)

1. Design an NFA for a binary number where the first and the last digits are same.
2. Briefly explain Myhill Nerode Relations
3. Is the grammar $\{\mathrm{E} \rightarrow \mathrm{E}+\mathrm{E}|\mathrm{E}-\mathrm{E}| \mathrm{id}\}$ ambiguous? Justify your answer.
4. Compare recursive and recursively enumerable languages
5. Discuss time complexity of a Turing Machine
6. Differentiate Decidable and Undecidable Problems.
7. Explain Tractable and intractable problems.
8. Define NP Completeness. Give examples for NP Complete Problems

PART B
 (Answer one full question from each module, each question carries 6 marks)
 MODULE I

9. NFA N for the following language L.
$L=\left\{x \in(a, b)^{*} \mid\right.$ the second last symbol in x is a$\}$
Obtain the DFA D equivalent to N by applying the subset construction algorithm.

OR

10. Show that regular languages are closed under union, intersection and complement

MODULE II

11. a) Design an ϵ-NFA for the regular expression $(0+1) * 01$
b)

Write a Regular Expression for the language:
$L=\left\{x \in(0,1)^{*} \mid\right.$ there are no consecutive 1's in x$\}$

OR

12. Using pumping lemma for regular languages, prove that the following given language is not regular.

$$
\begin{equation*}
L=\left\{a^{\mathrm{n}} b^{\mathrm{n}} \mid n \geq 0\right\} \tag{6}
\end{equation*}
$$

MODULE III

13. Construct a grammar in Greibach normal form equivalent to the grammar $\mathrm{S} \rightarrow \mathrm{AA}$ $|\mathrm{a}, \mathrm{A} \rightarrow \mathrm{SS}| \mathrm{b}$

OR

14. a) Explain the different methods by which a PDA accepts a language.
b) Design a PDA for the language
$L=\left\{w^{2} w^{R} \mid w \in(0,1)^{*}\right.$ and w^{R} is the reverse of $\left.w\right\}$
MODULE IV
15. Design a Turing machine to identify the strings belong to the language $L=\left\{w^{R}\right.$ $\mid \mathrm{w} \in(0,1)^{*}$ and w^{R} is the reverse of w$\}$.

OR

16. Design a TM to find the sum of two numbers m and n. Assume that initially the tape contains m number of 0 s followed by $\#$ followed by n number of 0 s .

MODULE V

17. Show that the halting problem of Turing machine is Undecidable.

OR

18. Using Diagonalization principle, prove that the set of real numbers between 0 and 1 is uncountable.

MODULE VI

19. a) Define PSPACE completeness.
b) Explain Polynomial time reduction with an example.

OR

20. Discuss Non-Trivial Property? Give the definition of Rice theorem.
