Name:

Register No.:

SAINTGITS COLLEGE OF ENGINEERING (AUTONOMOUS)

(AFFILIATED TO APJ ABDUL KALAM TECHNOLOGICAL UNIVERSITY, THIRUVANANTHAPURAM)

SECOND SEMESTERB.TECH DEGREE EXAMINATION (Regular), JULY 2022

(2020 SCHEME)

Course Code:20MAT102Course Name:Vector Calculus, Differential Equations and TransformsMax. Marks:100

Duration: 3 Hours

PART A

(Answer all questions. Each question carries 3 marks)

- 1. Find the velocity, speed and acceleration at the given time t of a particle moving along the curve $\vec{r}(t) = t\hat{i} + \frac{1}{2}t^2\hat{j} + \frac{1}{3}t^3\hat{k}$; t = 2.
- 2. If $\phi(x, y, z) = x \sin z + y \sin x + z \sin y$ is a potential function of \vec{F} , find \vec{F}
- 3. Using Green's theorem evaluate $\int_C tan^{-1}ydx \frac{y^2x}{1+y^2}dy$, where *C* is the square with vertices (0,0), (1,0), (1,1) and (0,1)
- 4. Use Divergence theorem to evaluate $\iint_{\sigma} F.ndS$ where F = (x z)i + (y x)j + (2z y)k where σ is the surface of the cylindrical solid bounded by $x^2 + y^2 = a^2, z = 0$ and z = 1
- 5. Find a general solution of $x^2y'' xy' 3y = 0$
- 6. Solve $y^{iv} 81y = 0$
- 7. Find $\mathcal{L}[t^2 u(t-1)]$
- 8. Find $\mathcal{L}^{-1}\left[\frac{1}{s(s^2+a^2)}\right]$
- 9. Find the Fourier sine transform of $e^{-|x|}$.
- 10. Does Fourier sine transform of e^x , $0 < x < \infty$ exist? Justify your answer

PART B

(Answer one full question from each module, each question carries 14marks)

MODULE I

- 11. a) Calculate the directional derivative of $F(x,y,z)=x^2y-yz^3+z$ at the point P(-1,2,0) in the direction of $\vec{u} = 2\hat{i} + \hat{j} - 2\hat{k}$ (7)
 - b) Show that the integral $\int_c 2xe^{-y}dx + (2y x^2e^{-y})dy$ is independent of path. (7) Hence evaluate the integral from (1,0) to (4,1).

OR

12. a) Determine the work done by the force field $F = (x + y)i + xyj - z^2k$ on a particle that moves along the line segments from (0,0,0) to (1,3,1) to (2,-1,5) (7)

782A2

А

Total Pages: **3**

b) Find $\operatorname{div} \vec{F}$ and $\operatorname{curl} \vec{F}$ at the point (1, -1, 1) where $\vec{F} = xz^3\hat{\imath} - 2x^2yz\hat{\jmath} + 2yz^4\hat{k}$ (7)

MODULE II

- 13. a) Using Green's theorem to evaluate the line integral $\int_C (3x^2 8y^2)dx + (4y 6xy)dy$ where *C* is the boundary of the region defined by $y = \sqrt{x}$, $y = x^2$ (7) and oriented counter clockwise
 - b) Use Stoke's theorem to evaluate $\int_C \vec{F} \cdot dV$ where $\vec{F} = xy\hat{i} + yz\hat{j} + xz\hat{k}$; *C* is the triangle in the plane x + y + z = 1 with vertices (1,0,0), (0,1,0) and (0,0,1) with (7) a counter clockwise orientation looking from the first octant towards origin.

OR

- 14. a) Evaluate the surface integral $\iint_{\sigma} f(x, y, z) dS$ where $f(x, y, z) = z^2$ and σ is the portion of the cone $z = \sqrt{x^2 + y^2}$ between the planes z = 1 and z = 3 (7)
 - b) Determine whether the following vector field F is free of sources and sinks. If not locate them
 - i. $F = x^3 i + y^3 j + 4z^3 k$ (7)
 - ii. $F = 2(x^3 2x)i + 2(y^3 2y)j + 2(z^3 2z)k$

MODULE III

15.	a)	Solve using the method of undetermined coefficients	(7)
		$(D^2 - 16I)y = 9.6e^{4x} + 30e^x$	(7)
	b)	Solve using the Method of variation of parameters	(7)

$$y'' - 4y' + 5y = e^{2x} cosecx$$
 (7)

OR

16. a) Solve
$$y'' + 4y' + (\pi^2 + 4)y = 0, y\left(\frac{1}{2}\right) = 1, y'\left(\frac{1}{2}\right) = -2$$
 (7)

b) Solve $y'' + 2y' + 0.75y = 2\cos x - 0.25\sin x$ (7)

MODULE IV

17. a) Evaluate (i)
$$\mathcal{L}\left[\frac{\cos 2t - \cos 3t}{t}\right]$$

(ii) $\mathcal{L}\left[e^{-4t}\int_{0}^{t}t\sin(3t)\,dt\right]$ (7)

b) Find (i)
$$\mathcal{L}^{-1}[cot^{-1}(1+s)]$$

(ii) $\mathcal{L}^{-1}\left[\frac{3s-2}{s^2+2s+6}\right]$ (7)

OR

18.	a)	Use Convolution theorem to find the inverse Laplace transform of $\frac{s}{(s-1)(s^2+4)}$	(7)
-----	----	---	-----

b) Using Laplace transform solve $y'' + 5y' + 6y = e^{-2t}$ given y(0) = y'(0) = 1 (7)

MODULE V

19. a) Find the Fourier sine transform of

Α

$$f(x) = \begin{cases} x, 0 < x < 1 \\ 2 - x, 1 < x < 2 \\ 0, x > 1 \end{cases}$$
(7)

b) Find the Fourier integral representation of the function

$$f(x) = \begin{cases} 2, & if |x| < 1\\ 0, & if |x| > 1 \end{cases}$$
(7)

OR

20. a) Find the Fourier cosine transform of $f(x) = \begin{cases} 1 - x^2, & \text{if } 0 < x < 1 \\ 0, & \text{otherwise} \end{cases}$.

Hence show that
$$\int_0^\infty \left(\frac{\sin w - w \cos w}{w^3}\right) \cos(\frac{w}{2}) dw = \frac{3\pi}{16}$$

b) Find the Fourier sine integral representation of $f(x) = \begin{cases} sinx, & if \ 0 \le x \le \pi \\ 0, & if \ x > \pi \end{cases}$ (7)
