SAINTGITS COLLEGE OF ENGINEERING (AUTONOMOUS)

(AFFILIATED TO APJ ABDUL KALAM TECHNOLOGICAL UNIVERSITY, THIRUVANANTHAPURAM)
FIRST SEMESTERINTEGRATED M.C.A DEGREE EXAMINATION (S), MAY 2022
(2020 SCHEME)
Course Code: 20IMCAT103
Course Name: Basic Mathematics
Max. Marks:
60
Duration: 3 Hours
PART A
(Answer all questions. Each question carries 3 marks)

1. Draw the Venn diagram of $A^{c} \cap(B \cup C)$.
2. Distinguish between equal sets and equivalent sets.
3. Define equivalence relation. Give an example.
4. Give an example for a partial ordering.
5. Give an example of a function that is not one-to-one.
6. Define inverse of a function.
7. Find the derivative of $y=x^{3} \log x$.
8. Find $y^{\prime \prime \prime}(0)$ where $y=\frac{x^{3}}{2}$.
9. State the fundamental theorem of Calculus.
10. Evaluate $\int_{0}^{\pi}(\cos x-\sin x) d x$.

PART B
 (Answer one full question from each module, each question carries 6 marks)

MODULE I

11. a) Define generalized union and intersection.
b) Find $\bigcup_{i=1}^{n} A_{i}$ where $A_{i}=\{i, i+1, i+2, \ldots\}$ and $\bigcap_{i=1}^{\infty} A_{i}$ where $A_{i}=\{i\}$.

OR

12. Find the number of elements in $A_{1} \cup A_{2}$ if there are 12 elements in A_{1} and 18 elements in A_{2} in each of the following cases.
a) $A_{1} \cap A_{2}=\emptyset$
b) $\left|A_{1} \cap A_{2}\right|=1$
c) $\left|A_{1} \cap A_{2}\right|=6$
d) $A_{1} \subseteq A_{2}$

MODULE II

13. Let R_{1} and R_{2} be two relations from the set $A=\{1,2,3\}$ to the set
$B=\{2,3,4\}$ defined by $R_{1}=\{(a, b) \mid a$ divides $b\}$ and $R_{2}=\{(a, b) \mid a=b\}$. Find the matrix representation of $R_{1}, R_{2}, R_{1} \cap R_{2}, R_{1} \cup R_{2}, R_{1}^{c}$ and R_{2}^{c}.

OR

14. a) Show that the divisibility relation " \mid " is a partial ordering on the set of all positive integers.
b) Distinguish between maximal and minimal elements in posets.

MODULE III

15. a) Define function as a relation.
b) Check whether $f: R \rightarrow R$ defined as $f(x)=-3 x+4$ is invertible. If it is invertible, find the inverse.

OR
16. a) Give an example of a function that is not onto.
b) Let $f, g: R \rightarrow R$ be defined as $f(x)=e^{x}$ and $g(x)=x^{5}$.

Find $f \circ g, g \circ f, f g, f+g$ and $f-g$.

MODULE IV

17. a) Find $f(0), f^{\prime}(0)$ and $f^{\prime \prime}(0)$ for $f(x)=x^{3}+3 x+\cos x$.
b) Find the derivative of $y=e^{\left(1+x^{2}\right)^{3}}$.

OR

18. Let $f(x)=k\left(\frac{x+1}{x-1}\right), k \neq 0$. Find the value of k if $f^{\prime}(x)=4$ for $x=0$.

MODULE V

19. a) Evaluate $\int_{0}^{\pi} \cos ^{2} x d x$.
b) Evaluate $\int_{0}^{1} e^{1-x} d x$.

OR

20. Find the area under the graph $y=\frac{x}{2} \sqrt{x}$ from $x=0$ to $x=1$.
