277A1

Register No.:

B

..... Name:

SAINTGITS COLLEGE OF ENGINEERING (AUTONOMOUS)

(AFFILIATED TO APJ ABDUL KALAM TECHNOLOGICAL UNIVERSITY, THIRUVANANTHAPURAM)

FIRST SEMESTERINTEGRATED M.C.A DEGREE EXAMINATION (S), MAY 2022

(2020 SCHEME)

Course Code: 20IMCAT103

Course Name: Basic Mathematics

60

Max. Marks:

PART A

(Answer all questions. Each question carries 3 marks)

- 1. Draw the Venn diagram of $A^c \cap (B \cup C)$.
- 2. Distinguish between equal sets and equivalent sets.
- 3. Define equivalence relation. Give an example.
- 4. Give an example for a partial ordering.
- 5. Give an example of a function that is not one-to-one.
- 6. Define inverse of a function.
- 7. Find the derivative of $y = x^3 log x$.
- 8. Find y'''(0) where $y = \frac{x^3}{2}$.
- 9. State the fundamental theorem of Calculus.
- 10. Evaluate $\int_0^{\pi} (\cos x \sin x) dx$.

PART B

(Answer one full question from each module, each question carries 6 marks)

MODULE I

11. a) Define generalized union and intersection. (2) b) Find $\bigcup_{i=1}^{n} A_i$ where $A_i = \{i, i+1, i+2, ...\}$ and $\bigcap_{i=1}^{\infty} A_i$ where $A_i = \{i\}$. (4)

OR

12. Find the number of elements in A₁ ∪ A₂ if there are 12 elements in A₁ and 18 elements in A₂ in each of the following cases.
a) A₁ ∩ A₂ = Ø
b) |A₁ ∩ A₂| = 1

- c) $|A_1 \cap A_2| = 6$
- d) $A_1 \subseteq A_2$

MODULE II

13. Let R_1 and R_2 be two relations from the set $A = \{1, 2, 3\}$ to the set (6) $B = \{2, 3, 4\}$ defined by $R_1 = \{(a, b) \mid a \text{ divides } b\}$ and $R_2 = \{(a, b) \mid a = b\}$. Find the matrix representation of R_1 , R_2 , $R_1 \cap R_2$, $R_1 \cup R_2$, R_1^c and R_2^c .

Duration: 3 Hours

(6)

.....

277A1

OR

14.	a)	Show that the divisibility relation " " is a partial ordering on the set of all positive integers.	(4)				
	b)	Distinguish between maximal and minimal elements in posets.	(2)				
MODULE III							
15.	a) b)	Define function as a relation. Check whether $f: R \to R$ defined as $f(x) = -3x + 4$ is invertible. If it is invertible, find the inverse.	(3) (3)				
OR							
16.		Give an example of a function that is not onto. Let $f, g: R \to R$ be defined as $f(x) = e^x$ and $g(x) = x^5$. Find $f \circ g$, $g \circ f, fg, f + g$ and $f - g$.	(2) (4)				
MODULE IV							
17.	a) b)	Find $f(0)$, $f'(0)$ and $f''(0)$ for $f(x) = x^3 + 3x + \cos x$. Find the derivative of $y = e^{(1+x^2)^3}$.	(3) (3)				
OR							
18.	Le	t $f(x) = k \left(\frac{x+1}{x-1}\right), k \neq 0$. Find the value of k if $f'(x) = 4$ for $x = 0$.	(6)				

MODULE V

19.	a)	Evaluate $\int_0^{\pi} \cos^2 x dx$.	(3)
	b)	Evaluate $\int_0^1 e^{1-x} dx$.	(3)

OR

20. Find the area under the graph $y = \frac{x}{2}\sqrt{x}$ from x = 0 to x = 1. (6)

Β