Register No.:

С

Name:

SAINTGITS COLLEGE OF ENGINEERING (AUTONOMOUS)

(AFFILIATED TO APJ ABDUL KALAM TECHNOLOGICAL UNIVERSITY, THIRUVANANTHAPURAM)

THIRD SEMESTERB. TECH DEGREE EXAMINATION (S), MAY 2022

CHEMICAL ENGINEERING

(2020 SCHEME)

Course Code: 20CHT203

Course Name: Chemical Process Principles

Max. Marks: 100

Duration: 3 Hours

Attested copy of psychrometric chart is permitted. Assume any missing data

PART A

(Answer all questions. Each question carries 3 marks)

- 1. List any three chemical process industries in India
- 2. The flow rate of water through a pipe is reported as $15 \text{ ft}^3/\text{min}$. Taking density of water as 1 g/cm^3 , calculate the mass flow rate in kg/s.
- 3. What are the general characteristics of an ideal solution?
- 4. Define the terms (i) wet bulb temperature (ii) adiabatic saturation temperature.
- 5. Which are the phases involved in the following unit operations:
 - (i) Absorption
 - (ii) Distillation
 - (iii) Leaching
- 6. Define the terms (i) Tie component (ii) Recycling
- 7. Write the significance of ORSAT analysis.
- 8. Define the terms (i) % yield (ii) selectivity
- 9. Write any three methods used for estimation of heat of vaporization.
- 10. The vapour pressure of benzene at 273 K is 25 kPa and at 293 K is 63.5 kPa. Estimate the mean latent heat of vaporization of benzene in kJ/kg in this temperature range.

PART B

(Answer one full question from each module, each question carries 14 marks)

MODULE I

- a) A saturated solution of salicylic acid (HOC₆H₄COOH) in methanol (CH₃OH) contains 64 kg salicylic acid per 100 kg methanol at 298 K. Find the composition of the solution in (i) weight % (ii) mole % and (iii) mole ratio of salicylic acid
 - b) A gas mixture contains 0.274 kmol of HCl, 0.337 kmol of N₂ and 0.089 kmol of O₂. Calculate (a) Average molecular weight of gas and (b) volume occupied (8) by this mixture at 405.3 kPa and 303 K

OR

12. a) A chemist is interested in preparing 500 ml of 1 normal, 1 molar and 1 molal (8)

265A4

solution of H_2SO_4 . Assuming the density of H_2SO_4 solution to be 1.075 g/cm³, calculate the amount of H_2SO_4 to be taken to prepare these solutions

- b) A mixture of oxygen and sulphur dioxide has an average molecular weight of 44.8 at 200 kPa. Calculate
 - (i) The composition of mixture in mole %

(6)

(8)

(6)

(8)

(4)

(4)

- (ii) The composition of mixture in weight %(iii) Partial pressure of oxygen in the mixture
 - pressure of oxygen in the link

MODULE II

- 13. a) An air-water vapor sample at 101.3 kPa has a dry bulb temperature of 328 K and is 10 % saturated with water vapor. Using the psychrometric chart determine the following:
 - (i) The absolute humidity
 - (ii) The partial pressure of water vapor
 - (iii) The absolute saturation humidity
 - (iv) The vapor pressure of water

OR

- 14. a) Explain the procedure for determining the following from a psychrometric chart if the dry and wet bulb temperatures are given.
 - (i) Absolute humidity
 - (ii) Humid volume
 - (iii) Adiabatic saturation temperature
 - b) The vapour pressure of acetone at 273 K is 8.52 kPa and that at 353 K is 194.9 kPa. Dry air initially at 101.3 kPa and 300 K is allowed to get saturated with the vapours of acetone at constant temperature and volume. Determine
 - (i) The final pressure of the mixture
 - (ii) The mole percent of acetone in the final mixture

Assume that the Clausius-Clapeyron equation is applicable to acetone

MODULE III

- 15. a) Differentiate between drying and evaporation
 - b) A batch of leather leaving a drier weighs 1000 kg and contains 5% moisture. During drying the leather, it loses 50% of its original weight. Determine the following:
 (10)
 - (i) The moisture content of the leather entering the drier on a dry basis
 - (ii) The amount of water removed as percent of the original water present

OR

- 16. a) Explain the significance of bypass and purge operations
 - b) A mixture of benzene and toluene containing 10 % by mole benzene is continuously distilled at a rate of 1000 kmol/h in a distillation column. 95% of the benzene in the feed is recovered as distillate product which contains 98% (10) benzene and 2% toluene. Calculate the following
 - (i) The moles of bottom product

b) Derive the Calusius Clapeyron equation form the Clapeyron equation (6)

265A4

Total Pages: 4

(4)

(14)

(4)

(4)

(ii) The composition of the bottom product

MODULE IV

- 17. a) A gas containing 25% CO, 5% CO₂, 2% O₂ and the rest N₂ is burnt with 20% excess air. If the combustion is 80% complete, Calculate the composition by volume of the flue gases considering the given compositions of gas to be on mole basis.
 - b) Write the significance of proximate and ultimate analysis of coal

OR

- 18. A fuel containing 74.1% C, 8.9% H and 17% ash by weight is burned with air and the resulting flue gas contains 12.4% CO₂, 1.2% CO, 4% O₂ and 82.4% N₂ by volume on a dry basis. Calculate:
 - (i) The amount (in kilogram) of coal fired per 100 kmol of flue gas
 - (ii) The percent excess air used

С

(iii)The kg of air used per kg of coal

MODULE V

- 19. a) State Hess's law of constant heat summation.
 - b) Obtain an empirical expression relating the heat of reaction and the temperature of the reaction for the following:

 $SO_2(g) + \frac{1}{2}O_2(g) \to SO_3(g)$

Using the same expression, calculate the heat of reaction at 773 K **Data:**

Component	ΔH^{0}_{f} , kJ/kmol	
SO ₃ (g)	-395720	(10)
SO ₂ (g)	-296810	(10)

 $C_{P}^{0} = a + bT + cT^{2} + dT^{3}, kJ/kmol K$

Component	a	b x 10 ³	c x 10 ⁶	c x 10 ⁹
SO ₃	22.036	121.624	-91.867	24.369
SO ₂	24.771	62.948	-44.258	11.122
O ₂	26.026	11.755	-2.343	-0.562

OR

20. a) State and explain (i) Kopp's rule and (ii) Trouton's rule

b) Calculate the standard heat of the following reaction at 298 K. $C_5H_{12}(g) + 8O_2(g) \rightarrow 5CO_2(g) + 6H_2O(l)$

The standard heat of formation of the components are:

Component	ΔH ⁰ _f , kJ/mol	
$CO_2(g)$	-393.509	(10)
$H_2O(g)$	-241.818	
$C_{5}H_{12}(g)$	-146.76	

The latent heat of vaporization of water at 298 K is 43.967 kJ/mol
