B 363A1 Total Pages: 2

Register No.:	Name:	
register ino	 ivaille.	

SAINTGITS COLLEGE OF ENGINEERING (AUTONOMOUS)

(AFFILIATED TO APJ ABDUL KALAM TECHNOLOGICAL UNIVERSITY, THIRUVANANTHAPURAM)

THIRD SEMESTER B.TECH DEGREE EXAMINATION (S), MAY 2022 CHEMICAL ENGINEERING (2020 SCHEME)

Course Code: 20CHT201

Course Name: Chemistry for Process Engineering

Max. Marks: 100 Duration: 3 Hours

PART A

(Answer all questions. Each question carries 3 marks)

- 1. What are the advantages and disadvantages of conductometric titration?
- 2. Give the principle and advantages of amperometric titration.
- 3. Differentiate between Atomic Absorption Spectroscopy and Atomic Emission spectroscopy.
- 4. Explain the working of Hollow cathode lamp.
- 5. What do you mean by rate of a reaction? Show graphically how the rate of a first order reaction varies with concentration of reactant.
- 6. When 0.83g of succinic acid was shaken with 100ml of water and ether, the ether layer was found to contain 0.70g of the acid. Calculate the distribution co-efficient of acid in ether and water.
- 7. How can you express protective power of protective colloids?
- 8. The volume of N_2 gas required to cover a sample of silica gel with a mono-molecular layer is 0.129g/L of gel. Calculate the surface area per gram of the silica gel if each N_2 molecule occupies $16.2 \times 10^{-20} \text{m}^2$.
- 9. Give the principle and application of Neutron Activation Analysis.
- 10. A radioactive nucleus decays with a half life of 5.27 years. Calculate decay constant for the radioactive disintegration.

PART B

(Answer one full question from each module, each question carries 14 marks)

MODULE I

- 11. a) Explain the instrumentation and procedure of polarography. (7)
 - b) Give the working principles of ethanol and urea bio sensors. (7)

OR

- 12. a) Explain the theory, principle and applications of Anodic Stripping Voltammetry. (8)
 - b) Write a note on electrogravimetry. (6)

MODULE II

- 13. a) Explain the principle and instrumentation of mass spectrometry. (10)
 - b) Describe the working principle of Scanning Tunneling Microscope. (4)

OR

14.	a) b)			
		MODULE III		
15.	a) b)			
		OR		
16.	a) b)	State and derive the Nernst Distribution Law from thermodynamic considerations. Under what conditions the law is valid? What is meant by Critical Solution Temperature? Draw and explain the phase	(8) (6)	
		diagram of phenol-water system	(-)	
		MODULE IV		
17.	a)	Classify colloids based on physical state, affinity towards the solvent medium and particle size.	(8)	
	b)	What is zeta potential? How it is determined?	(6)	
		OR		
18.	a)	Explain the following 1.Micelles based on their shape and structure 2.Critical micelle concentration 3.Factors affecting CMC	(9)	
	b)	Derive Langmuir Isotherm.	(5)	
		MODULE V		
19. a)		Discuss the stability of nucleus in terms of n/p ratio. How do α , β emission and K-capture process take place during a nuclear reaction?	(10)	
	b)	What is the change in mass in grams when 2 moles of hydrogen atoms combine to form 1 mole of hydrogen molecule? $2H \rightarrow H_2 \Delta E = -436 \text{KJ (1J=1kgm}^2 \text{s}^{-2})$	(4)	
		OR		
20.	a)	Distinguish between radiative and non-radiative transitions. Explain fluorescence and phosphorescence using Jablonski diagram.	(8)	
	b)	Write a note on chemiluminescence and bioluminescence with examples.	(6)	
