287A1

С

Register No.:

Name:

SAINTGITS COLLEGE OF ENGINEERING (AUTONOMOUS)

(AFFILIATED TO APJ ABDUL KALAM TECHNOLOGICAL UNIVERSITY, THIRUVANANTHAPURAM)

THIRD SEMESTER B.TECH DEGREE EXAMINATION (S), MAY 2022

ELECTRONICS AND COMMUNICATION ENGINEERING

(2020 SCHEME)

Course Code: 20ECT203

Course Name: Logic Circuit Design

Max. Marks: 100

Duration: 3 Hours

(8)

(6)

PART A

(Answer all questions. Each question carries 3 marks)

- 1. Convert 125.625 into binary and octal.
- 2. Find the value of G where $(900)_8 = (240)_G$.
- 3. State and prove De-Morgan's Theorems.
- 4. Find the Max term of the Boolean function F = (A+B'+C)(B'+C)(A'+B').
- 5. Write the Verilog code of a full adder.
- 6. Implement a half adder using NAND gate.
- 7. Draw a four bit Ring counter with its state diagram.
- 8. Compare sequential and combinational circuits.
- 9. Compare the performance of TTL and CMOS logic families.
- 10. Define noise margin.

PART B

(Answer one full question from each module, each question carries 14 marks)

MODULE I

- 11. a) Do the following arithmetical operation
 - i. 65.75₍₈₎ 46.56₍₈₎
 - ii. 9AB.26(16) +6CD.64(16)
 - iii. 1101.11₍₂₎ *101.1O₍₂₎
 - iv. 1110₍₂₎ / 101₍₂₎
 - b) Define keywords, modules, operators of Verilog HDL.

OR

12. a) i) Represent (- 37.75) in floating point. ii) Represent 624 in BCD and Excess 3 Code.
b) Explain various data types and statements in verilog. (7)

MODULE II

- 13. a) Design a combinational circuit using the simplified expression of the given Boolean function using K Map and implement it using basic gates (8) $F(A,B,C,D)=\pi M(2,8,9,10,11,12,14)$
 - b) Write the verilog code for the reduced expression of the above function (6)

287A1

С

OR

14.	a)	Simplify the given Boolean function using K Map and implement it using basic gates.	(8)
		$f(A, B, C, D) = \sum m(0.1, 2, 4, 5, 8, 9, 10, 12, 13) + d(3, 6)$	(8)
	b)	Write the verilog code for the reduced expression of the above function.	(6)
MODULE III			
15.	a)	Design a 2 bit magnitude comparator and implement it using gates.	(10)
	b)	Write verilog code for 8:3 encoder.	(4)
		OR	
16.	a)	Design a multiplexer to realize the function represented by	
		F (A, B, C, D) = $\sum m (0,1,2,3,5,7,8,9,10,12,13)$, using	
		i) 16:1 MUX	(9)
		ii) 8:1 MUX	
		iii) one 8:1 MUX	
	b)	Write Verilog code for 8:1multiplexer.	(5)
		MODULE IV	
17.	a)	Design a SR flip flop from JK flip flop.	(8)
	b)	With a neat diagram explain the working of a 2 bit synchronous up counter.	(6)
		OR	
18.	a)	Design a Mod 10 asynchronous down counter.	(8)
	b)	Write truth table and excitation table of JK flip flop and derive the characteristic equations.	(6)
		MODULE V	
19.	a)	Explain the working of TTL NAND gate Totempole configuration with a neat diagram.	(8)
	b)	Describe the working of CMOS inverter with a neat diagram.	(6)
		OR	
20.	a)	Explain the working of CMOS NOR gate with a neat diagram.	(8)
	b)	With relevant illustrations, describe the working of TTL inverter.	(6)
