SAINTGITS COLLEGE OF ENGINEERING (AUTONOMOUS)
 (AFFILIATED TO APJ ABDUL KALAM TECHNOLOGICAL UNIVERSITY, THIRUVANANTHAPURAM)
 THIRD SEMESTER B.TECH DEGREE EXAMINATION (S), MAY 2022 ELECTRONICS AND COMMUNICATION ENGINEERING (2020 SCHEME)
 Course Code: 20ECT203
 Course Name: Logic Circuit Design
 Max. Marks: 100 Duration: 3 Hours

PART A
 (Answer all questions. Each question carries 3 marks)

1. Convert 125.625 into binary and octal.
2. Find the value of G where $(900) 8=(240)_{G}$.
3. State and prove De-Morgan's Theorems.
4. Find the Max term of the Boolean function $F=\left(A+B^{\prime}+C\right)\left(B^{\prime}+C\right)\left(A^{\prime}+B^{\prime}\right)$.
5. Write the Verilog code of a full adder.
6. Implement a half adder using NAND gate.
7. Draw a four bit Ring counter with its state diagram.
8. Compare sequential and combinational circuits.
9. Compare the performance of TTL and CMOS logic families.
10. Define noise margin.

PART B
(Answer one full question from each module, each question carries 14 marks)

MODULE I

11. a) Do the following arithmetical operation
i. $\quad 65.75_{(8)}-46.56_{(8)}$
ii. $\quad 9 \mathrm{AB} \cdot 26_{(16)}+6 \mathrm{CD} \cdot 64_{(16)}$
iii. $\quad 1101.11_{(2)} * 101.1 \mathrm{O}_{(2)}$
iv. $\quad 1110_{(2)} / 101_{(2)}$
b) Define keywords, modules, operators of Verilog HDL.

OR

12. a) i) Represent (- 37.75) in floating point.
ii) Represent 624 in BCD and Excess 3 Code.
b) Explain various data types and statements in verilog.

MODULE II
13. a) Design a combinational circuit using the simplified expression of the given Boolean function using K Map and implement it using basic gates

$$
\begin{equation*}
\mathrm{F}(\mathrm{~A}, \mathrm{~B}, \mathrm{C}, \mathrm{D})=\pi \mathrm{M}(2,8,9,10,11,12,14) \tag{8}
\end{equation*}
$$

b) Write the verilog code for the reduced expression of the above function

OR

14. a) Simplify the given Boolean function using K Map and implement it using basic gates.

$$
\begin{equation*}
\mathrm{f}(\mathrm{~A}, \mathrm{~B}, \mathrm{C}, \mathrm{D})=\sum \mathrm{m}(0.1,2,4,5,8,9,10,12,13)+\mathrm{d}(3,6) \tag{8}
\end{equation*}
$$

b) Write the verilog code for the reduced expression of the above function.

MODULE III

15. a) Design a 2 bit magnitude comparator and implement it using gates.
b) Write verilog code for 8:3 encoder.

OR

16. a) Design a multiplexer to realize the function represented by F (A, B, C, D) $=\sum \mathrm{m}(0,1,2,3,5,7,8,9,10,12,13)$, using
i) $16: 1 \mathrm{MUX}$
ii) 8:1 MUX
iii) one 8:1 MUX
b) Write Verilog code for 8:1multiplexer.

MODULE IV

17. a) Design a SR flip flop from JK flip flop.
b) With a neat diagram explain the working of a 2 bit synchronous up counter.

OR

18. a) Design a Mod 10 asynchronous down counter.
b) Write truth table and excitation table of JK flip flop and derive the characteristic equations.

MODULE V

19. a) Explain the working of TTL NAND gate Totempole configuration with a neat diagram.
b) Describe the working of CMOS inverter with a neat diagram.

OR

20. a) Explain the working of CMOS NOR gate with a neat diagram.
b) With relevant illustrations, describe the working of TTL inverter.
