SAINTGITS COLLEGE OF ENGINEERING (AUTONOMOUS)

(AFFILIATED TO APJ ABDUL KALAM TECHNOLOGICAL UNIVERSITY, THIRUVANANTHAPURAM)
THIRD SEMESTER B.TECH DEGREE EXAMINATION (S), MAY 2022

COMPUTER SCIENCE AND ENGINEERING

(2020 SCHEME)

Course Code:
Course Name:
Max. Marks: 100

Duration: 3 Hours

PART A
 (Answer all questions. Each question carries 3 marks)

1. Show the three different binary representations (in 8 bits) for the decimal number - 68 .
2. Convert (163.875$)_{10}$ to a) binary b) octal and c) hexadecimal number systems.
3. Express the function, $\mathrm{f}(\mathrm{A}, \mathrm{B}, \mathrm{C})=\mathrm{AB}^{\prime}+\mathrm{BC}$ in product of Maxterms form.
4. Using K- Map simplify the function $\mathrm{F}(\mathrm{w}, \mathrm{x}, \mathrm{y}, \mathrm{z})=\Sigma(0,1,3,4,5,6,7,13,15)$.
5. Implement a full adder using half adders.
6. Write the truth table of a 1×4 demultiplexer and show the corresponding logic diagram.
7. Give the truth table, characteristics table and excitation table of SR flip-flop.
8. How is a sequential circuit different from a combinational circuit? Give an example for each circuit.
9. The value of a float type variable is represented using the single-precision 32-bit floating point format IEEE-754 standard that uses 1 bit for sign, 8 bits for biased exponent and 23 bits for mantissa. A float type variable X is assigned the decimal value of -85.125 . What is the representation of X in hexadecimal notation?
10. How is static RAM different from dynamic RAM?

PART B
 (Answer one full question from each module, each question carries 14 marks)

MODULE I

11. a) Find the 12-bit 2's complement form of the following decimal numbers
i) $\quad-97.5$
ii) -73.0625
b) Subtract the following octal numbers by a) 7's complement arithmetic b) 8 's complement arithmetic
i) $256-643$
ii) $243.6-705.64$

OR

12. a) If $\sqrt{61}=7$, find the base of the number system.
b) Perform the following operations in 8 bits using a) 1 's complement representation b) 2's complement representation
i) $(-35)+(-19)$
ii) $\quad(+68.75)-(-27.25)$

MODULE II

13. a) Redraw the circuit given after simplification

b) Using Quine- McClusky method of tabular reduction, minimize the given combinational single output function, $\mathrm{f}(\mathrm{A}, \mathrm{B}, \mathrm{C}, \mathrm{D})=\sum(2,3,8,10,12,13$, 14).

OR

14. a) Simplify the given logic expression using K-map and implement the real minimal expression in universal logic.
$\mathrm{F}(\mathrm{A}, \mathrm{B}, \mathrm{C}, \mathrm{D})=\pi(1,4,5,11,12,14) \cdot \mathrm{d}(6,7,15)$
b) Reduce the given Boolean expression, $\mathrm{F}(\mathrm{X}, \mathrm{Y}, \mathrm{Z})=\mathrm{XY}+(\mathrm{XZ})^{\prime}+\mathrm{XY} \mathrm{Z}^{\prime}(\mathrm{XY}+\mathrm{Z})$

MODULE III

15. a) Design and implement a 2-bit magnitude comparator
b) Design a combinational circuit that accepts a 3-bit BCD number and generates an output binary number equal to the square of the input number.

OR

16. a) Design a code converter for converting binary to Gray code
b) Implement the following Boolean function using a 8 X 1 multiplexer and additional gates as needed
$\mathrm{f}(\mathrm{A}, \mathrm{B}, \mathrm{C}, \mathrm{D})=\Sigma(1,3,4,11,12,13,14,15)$.

MODULE IV

17. a) What is race around condition? Why does it occur? Discuss how masterslave flip-flop eliminates it.
b) Design a type D counter that goes through the states $0,1,2,4,0, \ldots$ The unused states must always go to zero (000) on the next clock pulse.

OR

18. a) How to convert a J-K flip flop to S-R flop? Show conversion table, K-map and logic diagram.
b) Design a Mod-6 asynchronous counter using T flip flops. Also verify its operation by means of a timing diagram.

MODULE V

19. a) Implement the following Boolean functions using a $3 \times 4 \times 2$ PLA
$\mathrm{F} 1=\Sigma(0,1,3,4)$
$\mathrm{F} 2=\Sigma(1,2,3,4,5)$
b) Illustrate the algorithm for addition and subtraction two binary numbers in signed magnitude form.

OR
20. a) Implement a 4 - bit bidirectional shift register with parallel load.
b) Illustrate the algorithm for addition and subtraction of two floating point numbers.

