Register No.:

SAINTGITS COLLEGE OF ENGINEERING (AUTONOMOUS)

(AFFILIATED TO APJ ABDUL KALAM TECHNOLOGICAL UNIVERSITY, THIRUVANANTHAPURAM)

THIRD SEMESTER B. TECH DEGREE EXAMINATION (S), MAY 2022

335A4

Name:

COMMON TO CE, CH, EC, EE, FT, ME, RA

(2020 SCHEME)

Course Code :	20MAT201
Course Name:	Partial Differential Equations and Complex Analysis
Max. Marks :	100

.....

Duration: 3 Hours

PART A

(Answer all questions. Each question carries 3 marks)

- Form a Partial differential equation from the relation $z = f(x^2 + y^2) + x + y$ 1.
- 2. Solve $\frac{\partial^2 z}{\partial x \partial y} = \frac{x}{y} + a$.
- 3. What are the three possible solutions of one dimensional wave equation?
- State any three assumptions in deriving the one dimensional heat equation . 4.
- 5. Show that $f(z) = \begin{cases} \frac{Re(z)}{|z|} & z \neq 0\\ 0 & z = 0 \end{cases}$ is discontinuous at z=0
- 6. Define critical point and fixed point of a complex function f(z).
- Evaluate $\oint \ln z \, dz$ where C is the unit circle |z| = 1. 7.
- Expand $f(z) = \frac{\sin z}{z \pi}$ as Laurent's series about $z = \pi$. 8.
- 9. Determine the nature and type of singularity of $z \sin(\frac{1}{z})$.
- 10. Find the residue of the function $\frac{1-e^{2z}}{z^4}$

 $u(x,0) = 4 e^{-x}$.

PART B

(Answer one full question from each module, each question carries 14 marks)

MODULE I

11.	a)	Solve $p - 2q = 3x^2 \sin(y + 2x)$.	(7)
	b)	Solve $p = (qy + z)^2$.	(7)

OR

12. Find the differential equation of all spheres whose centers lie on the z-axis. (7) a) Using the method of separation of variables solve $3\frac{\partial u}{\partial x} + 2\frac{\partial u}{\partial y} = 0$, given b) (7)

MODULE II

13. Find the D' Alembert's solution of the deflection of a vibrating string of unit a) length having fixed ends with initial velocity zero and initial deflection f(x) =(6) $k(\sin x - \sin 2x)$.

335A4

Α

b) An insulated rod of length *l* has its ends A and B are maintained at 0° *C* and 200°*C* C respectively under steady state condition prevails. If the temperature at B is suddenly reduced to 0° *C* and maintained at 0° *C*. Find the temperature at a distance x from A at time t.

OR

14. a) A tightly stretched string with fixed end points x = 0 and x = l is initially at rest in equilibrium position. If it is set vibrating by giving to each of its points a velocity λx(l - x), find the displacement of the string at any distance x from one end at any time t.
b) Derive the solution of one-dimensional heat equation (7)

MODULE III

15. a) Prove that $w = \cos hz$ is an entire function. Also find its derivative.(6)b) Discuss the mapping $w = z^2$.(8)

OR

- 16. a) Find the analytic function whose real part is cosx cos hy. (7) b) II 1 that the function $\frac{1}{2}C$ 1 that is cosx cos hy. (7)
 - b) Under the transformation $w = \frac{1}{z}$ find the image of |z 2i| = 2. (7)

MODULE IV

17. a) Evaluate
$$\int_0^{1+i} (x^2 - ixy) dz$$
 along the path $y = x^2$. (7)
b) $x = x^{2+4}$

Evaluate
$$\int_C \frac{z+4}{z^2+2z+5} dz$$
 where C is $|z+1-i| = 2$. (7)

OR

18.	a)	Using Cauchy's integral formula evaluate $\int_C \frac{z^2}{(z-1)^2(z+2)} dz$ where C is	(7)
		z-2 = 2.	(,)
	1-)		

b) Find the Maclaurin series expansion of
$$\frac{z+2}{1-z^2}$$
. (7)

MODULE V

19. a) Expand
$$f(z) = \frac{z}{(z+1)(z+2)}$$
 in Laurent's series about $z = -2$ in
 $0 < |z+2| < 1$.
(7)

b) Evaluate $\int_C \frac{\cos \pi z}{z^2 - 1} dz$ using Cauchy's residue theorem where C is the rectangle (7) with vertices $2 \pm i, -2 \pm i$.

OR

20. a) Evaluate $\int_C \frac{e^z}{(z+1)^3} dz$ using Cauchy's residue theorem where C is |z+1| = 2 (7)

b) Using contour integration evaluate $\int_0^{\pi} \frac{1}{5-3\sin\theta} d\theta$. (7)

Page 2 of 2