SAINTGITS COLLEGE OF ENGINEERING (AUTONOMOUS)

(AFFILIATED TO APJ ABDUL KALAM TECHNOLOGICAL UNIVERSITY, THIRUVANANTHAPURAM)
THIRD SEMESTER B.TECH DEGREE EXAMINATION (S), MAY 2022

FOOD TECHNOLOGY

(2020 SCHEME)

Course Code:	20FTT201
Course Name:	Principles of Chemical Engineering
Max. Marks:	$\mathbf{1 0 0}$

Duration: 3 Hours

PART A
 (Answer all questions. Each question carries 3 marks)

1. Fructose, $\mathrm{C}_{6} \mathrm{H}_{12} \mathrm{O}_{6}$, is a sugar found in honey and fruits. The sweetest sugar, it is nearly twice as sweet as sucrose. How much water should be added to 1.75 g of fructose to give a 0.125 m solution of Fructose?
2. How many $\mathrm{kg} / \mathrm{hr}$ of sugar syrup with 10% sugar must be feed to an evaporator to produce 10000 kg .hr of sugar syrup with 65% sugar.
3. Explain the terms
a) Limiting reactant
b) Excess Reactant
c) Yield
4. How much saturated steam with 120.8 kPa pressure is required to concentrate $1000 \mathrm{~kg} / \mathrm{h}$ of juice from 12% to 20% solids at $95^{\circ} \mathrm{C}$? Assume that the heat capacity of juice is 4 $\mathrm{kJ} / \mathrm{kg}^{\circ} \mathrm{C}$.
5. Recall Newton's Law of Viscosity
6. Calculate the specific weight, density and specific gravity of two liters of a liquid which weight 15 N
7. Interpret the bernoulli's equation for real fluid.
8. Interpret the Darcy weishback equation.
9. Define efficiency of centrifugal pump.
10. Depict the working principle of rotameter.

PART B
 (Answer one full question from each module, each question carries 14 marks)
 MODULE I

11. A binary mixture consists of 25% benzene and 85% toluene are continuously fed to the distillation column at a rate of $2500 \mathrm{~kg} / \mathrm{hr}$. Whereas, the distillate flow rate was 20% from the feed flow rate. The distillate (top product) contains 75% benzene. Calculate quantity and compositions of the waste stream.

OR

12. a) You are asked to prepare a batch of 18.63% battery acid as follows. A tank of old weak battery acid $\left(\mathrm{H}_{2} \mathrm{SO}_{4}\right)$ solution contains $12.43 \% \mathrm{H}_{2} \mathrm{SO}_{4}$ (the
remainder is pure water). If 200 kg of $77.7 \% \mathrm{H}_{2} \mathrm{SO}_{4}$ is added to the tank, and the final solution is to be $18.63 \% \mathrm{H}_{2} \mathrm{SO}_{4}$, how many kilograms of battery acid have been made?
b) It is required to prepare 1250 kg of a solution composed of $12 \mathrm{wt} \%$ ethanol and $88 \mathrm{wt} \%$ water. Two solutions are available, the first contains $5 \mathrm{wt} \%$ ethanol, and second contains $25 \mathrm{wt} \%$ ethanol. How much of each solution are mixed to prepare the desired solution?

MODULE II

13. A limestone analyses (weight\%)
$\mathrm{CaCO}_{3} 92.89 \%$
$\mathrm{MgCO}_{3} 5.41 \%$
Inert 1.70\%
By heating the limestone, you recover oxides known as lime.
(a)How many pounds of calcium oxide can be made from 3 ton of this limestone?
(b)How many pounds of CO_{2} can be recovered per pound of limestone?
(c)How many pounds of limestone are needed to make 1 ton of lime?

OR

14. a) $1000 \mathrm{~kg} / \mathrm{h}$ of milk is heated in a heat exchanger from $45^{\circ} \mathrm{C}$ to $72^{\circ} \mathrm{C}$. Water is used as the heating medium. It enters the heat exchanger at $90^{\circ} \mathrm{C}$ and leaves at $75^{\circ} \mathrm{C}$. Calculate the mass flow rate of the heating medium, if the heat losses to the environment are equal to 1 kW . The heat capacity of water is given equal to $4.2 \mathrm{~kJ} / \mathrm{kg}^{\circ} \mathrm{C}$ and that of milk $3.9 \mathrm{~kJ} / \mathrm{kg}^{\circ} \mathrm{C}$.
b) How much saturated steam with 120.8 kPa pressure is required to heat 1000 g / h of juice from $5^{\circ} \mathrm{C}$ to $95^{\circ} \mathrm{C}$? Assume that the heat capacity of the juice is 4 $\mathrm{kJ} / \mathrm{kg}^{\circ} \mathrm{C}$.

MODULE III

15. a) Differentiate between the simple manometer and differential manometer with neat sketch.
b) A differential manometer is connected a two-point A and B of two pipes as shown in fig. The pipe A contain a liquid of sp.gr. = 1.5 While pipe B contains a liquid $\mathrm{Sp} . \mathrm{gr}=0.9$. The pressure A and B are $1 \mathrm{Kgf} / \mathrm{cm}^{2}$ and 1.80 $\mathrm{Kgs} / \mathrm{cm}^{2}$ respectively. Find the difference in mercury level in differential manometer

OR

16. Explain the physical properties of fluids and type of fluids with examples.

MODULE IV

17. Derive Bernoulli's equation from Euler's equation of motion (or) state and explain Bernoulli's equation with assumptions.

OR

18. a) The water is flowing through a taper pipe of length 100 m and having
diameter 600 mm at the upper end and 300 mm at the lower end, at the rate of 50 litres per second the pipe has slope of 1 in 30 . Find the pressure at lower end. If the pressure at the higher level is $19.62 \mathrm{~N} / \mathrm{cm}^{2}$.
b) At a sudden enlargement of a water main from 240 mm to 480 mm diameter hydraulic gradient rises by 10 mm . Find the rate of flow.

MODULE V

19. With neat sketches explain the working of a single acting and double acting positive displacement pumps.

OR

20. Outline the co-efficient of discharge of a venturi meter.
