Register No.:

Name:

SAINTGITS COLLEGE OF ENGINEERING (AUTONOMOUS)

(AFFILIATED TO APJ ABDUL KALAM TECHNOLOGICAL UNIVERSITY, THIRUVANANTHAPURAM)

THIRD SEMESTER B.TECH DEGREE EXAMINATION (S), MAY 2022

ELECTRONICS AND COMMUNICATION ENGINEERING

(2020 SCHEME)

Course Code: 20ECT201

Course Name: Solid State Devices

Max. Marks: 100

Duration: 3 Hours

PART A

- 1. Explain Fermi Dirac Distribution function. Plot the Fermi Dirac Distribution function for an intrinsic semiconductor.
- 2. Distinguish between direct and indirect band gap semiconductors.
- 3. Explain the effect of temperature on mobility.
- 4. What is hall effect?
- 5. Define injection efficiency and transport factor of a BJT. How they are related to α and β .
- 6. Explain base width modulation with neat diagram.
- 7. Differentiate between Enhancement type and Depletion type MOSFET.
- 8. What is body effect?
- 9. Differentiate between constant voltage scaling and constant field scaling.
- 10. Illustrate hot carrier effects in MOSFET.

PART B

(Answer one full question from each module, each question carries 14 marks)

MODULE I

11. a) Derive mass action law. (8) b) A silicon sample is doped with 10^{17} As atoms/cm³. What is the equilibrium hole concentration p_0 at 300K? Where is E_f relative to E_i ? Take $n_i = 1.5 \times 10^{10}$ /cm³. (6)

OR

- 12. a) With the help of suitable schematics, derive the equilibrium concentration of electrons and holes in a semiconductor. (10)
 - b) Compare direct bandgap and indirect bandgap semiconductors. (4)

MODULE II

- 13. a) Describe diffusion process. Derive the expression for diffusion current density. (8)
 - b) A silicon bar 0.1cm long and 100 μ m² in cross sectional area is doped with 10^{17} cm⁻³ phosphorus. Find the current at 300 K with 10 V applied. Given $\mu_n = (6)$ 700 cm²/V-s.

OR

a) Derive the continuity equations for holes and electrons in a semiconductor. (7)
b) Derive and explain Einstein relations. (7)

391A4

MODULE III

- 15. a) Derive the expression for ideal diode equation. State the assumption used. (9)
 - b) Calculate the contact potential of a PN junction diode having $N_A = 2 \times 10^{16}/\text{cm}^3$ and $N_D = 5 \times 10^{13}/\text{cm}^3$ at T = 300K. Take $n_i = 1.5 \times 10^{10}/\text{cm}^3$ (5)

OR

- 16. a) Write notes on metal semiconductor contacts.(8)
 - b) Draw the energy band diagram of a PN junction i) at equilibrium ii) under forward bias iii) under reverse bias. (6)

MODULE IV

- 17. a) With the help of necessary diagrams, explain equilibrium, accumulation, depletion and inversion stages of a MOS capacitor. (10)
 - b) For an n-channel MOSFET with a gate oxide thickness of 10 nm, $V_T = 0.6V$, and $Z = 25 \,\mu\text{m}$, $L = 1 \,\mu\text{m}$. Calculate the drain current at $V_G = 5V$ and $V_D = 0.1V$. (4) Assume an electron channel mobility of $\bar{\mu}_n = 200 \,\text{cm}^2/\text{V-s}$.

OR

- 18. a) Derive the expression for drain current at saturation for a MOSFET. (7)
 - b) Describe the C-V characteristics of an ideal MOS capacitor. (7)

MODULE V

- a) Explain Drain induced barrier lowering, Velocity Saturation and Threshold Voltage variations associated with scaling down of MOSFETs
 (9)
 - b) Plot the sub threshold characteristics of MOSFET and explain. (5)

OR

20. Explain the structure and working of a FINFET with necessary diagrams. List its advantages. (14)

Β