SAINTGITS COLLEGE OF ENGINEERING (AUTONOMOUS)

(AFFILIATED TO APJ ABDUL KALAM TECHNOLOGICAL UNIVERSITY, THIRUVANANTHAPURAM)
FIRST SEMESTER B.TECH DEGREE EXAMINATION (S), MAY 2022

COMMON TO ALL BRANCHES

(2020 SCHEME)

Course Code : 20MAT101

Course Name: Linear Algebra and Calculus
Max. Marks : 100
Duration: 3 Hours

PART A

(Answer all questions. Each question carries 3 marks)
1.

Find the rank of the matrix $A=\left[\begin{array}{llll}1 & 2 & 3 & 2 \\ 2 & 3 & 5 & 1 \\ 1 & 3 & 4 & 5\end{array}\right]$ by reducing it to the row echelon form.
2. Find the eigen values of the matrix $A=\left[\begin{array}{cc}7 & -1 \\ 4 & 3\end{array}\right]$.
3. Let $f(x, y)=\sqrt{3 x+2 y}$ then find the slope of the surface $z=f(x, y)$ in the x-direction and y-direction at the point $(2,5)$.
4. Compute the total differential $d w$ of the function $w=\tan ^{-1}(x y z)$.
5. Evaluate $\int_{\frac{\pi}{2}}^{\pi} \int_{1}^{2} x \sin (x y) d y d x$.
6. Find the area of the plane region enclosed by the parabola $y=x^{2}$ and the line $y=2 x+3$.
7. Find the rational number represented by 0.784784784 ...
8. Test the convergence of the series $\sum_{k=1}^{\infty}\left(1+\frac{3}{k}\right)^{k}$.
9. Find the Taylor series expansion of $\frac{1}{x+2}$ about $x=1$.
10. Find the Euler coefficients of $f(x)=x^{2} ;-\pi<x<\pi$.

PART B
 (Answer one full question from each module, each question carries 14 marks)
 MODULE I

11. a) Solve the following system of equations by Gauss elimination and back substitution method: $3 x_{1}+3 x_{2}+2 x_{3}=1, x_{1}+2 x_{2}=4,10 x_{2}+3 x_{3}=-2$, $2 x_{1}-3 x_{2}-x_{3}=5$.
b) Find an orthogonal matrix which diagonalize the matrix $A=\left[\begin{array}{lll}2 & 0 & 1 \\ 0 & 2 & 0 \\ 1 & 0 & 2\end{array}\right]$.

OR

12. a) What kind of conic section is given by the quadratic form

$$
\begin{align*}
& Q=4 x_{1}{ }^{2}+6 x_{1} x_{2}-4 x_{2}{ }^{2}=10 ? \text { Transform it to principal axes. Express } \tag{7}\\
& x^{T}=\left[x_{1}, x_{2}\right] \text { in terms of the new coordinate vector } y^{T}=\left[y_{1}, y_{2}\right] .
\end{align*}
$$

b) For what values of a and b do the equations
$x+2 y+3 z=6, x+3 y+5 z=9,2 x+5 y+a z=b$ have
(i) no solution (ii) a unique solution (iii) more than one solution.

MODULE II
13. a) Let $w=\ln \left(3 x^{2}-2 y+4 z^{3}\right) ; x=t^{1 / 2}, y=t^{2 / 3}, z=t^{-1}$. Use chain rule to find $\frac{d w}{d t}$ at $t=1$.
b) Locate all relative maxima, relative minima and saddle points of $f(x, y)=x y+\frac{2}{x}+\frac{4}{y}$.

OR

14. a) Find the local linear approximation $L(x, y, z)$ to $f(x, y, z)=\frac{x+y}{y+z}$ at the point $P(-1,1,1)$. Compare the error in approximating f by L at the specified point $Q(-0.99,0.99,1.01)$.
b) If $u=f(2 x-3 y, 3 y-4 z, 4 z-2 x)$ then prove that $\frac{1}{2} \frac{\partial u}{\partial x}+\frac{1}{3} \frac{\partial u}{\partial y}+\frac{1}{4} \frac{\partial u}{\partial z}=0$.

MODULE III

15. a) Evaluate $\iint_{R}\left(x^{2}+y^{2}\right) d y d x$ over the region in the positive quadrant for which $x+y \leq 1$.
b) Evaluate $\int_{0}^{\infty} \int_{0}^{\infty} \frac{e^{-y}}{y} d y d x$ by changing the order of integration.

OR

16. a) Find the volume bounded by the cylinder $x^{2}+y^{2}=4$ and the planes $y+z=4$ and $z=0$.
b) Evaluate $\int_{0}^{1} \int_{0}^{\sqrt{1-x^{2}}} \int_{0}^{\sqrt{1-x^{2}-y^{2}}} \frac{d z d y d x}{\sqrt{1-x^{2}-y^{2}-z^{2}}}$ by changing to spherical polar coordinates.

MODULE IV

17. a) Determine whether the series $2+\frac{2}{5}+\frac{2}{5^{2}}+\frac{2}{5^{3}}+\ldots .$. converges and if so find the sum.
b) Test the convergence of the series
(i) $\sum_{k=1}^{\infty}(-1)^{k+1} \frac{5 k}{3^{k}}$
(ii) $\sum_{k=1}^{\infty} \frac{1}{\sqrt[3]{8 k^{2}-3 k}}$

OR

18. a) Test the convergence of the series
(i) $\quad \sum_{k=1}^{\infty} \frac{x^{k}}{2^{k} k^{2}} ; x>0$
(ii) $\sum_{k=1}^{\infty} \frac{\ln k}{k}$
b) Check whether the series absolutely convergent, conditionally convergent or divergent.
(i) $\sum_{k=1}^{\infty}(-1)^{k+1} \frac{3^{2 k-1}}{k^{2}+1}$
(ii) $\sum_{k=1}^{\infty} \frac{(-1)^{k}}{\sqrt{k(k+1)}}$

MODULE V

19. a) Obtain the Fourier series to represent $f(x)=\frac{1}{4}(\pi-x)^{2}$ in the interval $0<x<2 \pi$ with $f(x+2 \pi)=f(x)$. Hence deduce that $\sum \frac{(-1)^{n-1}}{n^{2}}=\frac{\pi^{2}}{12}$.
b) Find the Binomial series of $\frac{1}{(1+x)^{2}}$.

OR

20. a) Find the Fourier sine series for unity in the interval ($0, \pi$) and hence show that $1+\frac{1}{3^{2}}+\frac{1}{5^{2}}+\cdots \cdots=\frac{\pi^{2}}{8}$.
b) Obtain the Fourier series expansion of the function

$$
f(x)=\left\{\begin{array}{c}
-\pi ; \text { when }-\pi<x<0 \tag{7}\\
x ; \text { when } 0<x<\pi
\end{array} . \text {. Also deduce that } \frac{1}{1^{2}}+\frac{1}{3^{2}}+\frac{1}{5^{2}}+\cdots \cdots=\frac{\pi^{2}}{8} .\right.
$$

