Page 1 of 3

Name:

Register No.:

Α

SAINTGITS COLLEGE OF ENGINEERING (AUTONOMOUS)

(AFFILIATED TO APJ ABDUL KALAM TECHNOLOGICAL UNIVERSITY, THIRUVANANTHAPURAM)

FIRST SEMESTER B.TECH DEGREE EXAMINATION (S), MAY 2022

COMMON TO ALL BRANCHES

(2020 SCHEME)

Course Code : 20MAT101

Linear Algebra and Calculus **Course Name:**

Max. Marks : 100

PART A

(Answer all questions. Each question carries 3 marks)

Find the rank of the matrix $A = \begin{bmatrix} 1 & 2 & 3 & 2 \\ 2 & 3 & 5 & 1 \\ 1 & 3 & 4 & 5 \end{bmatrix}$ by reducing it to the row echelon form. 1.

Find the eigen values of the matrix $A = \begin{bmatrix} 7 & -1 \\ 4 & 2 \end{bmatrix}$. 2.

- 3. Let $f(x, y) = \sqrt{3x + 2y}$ then find the slope of the surface z = f(x, y) in the x-direction and y-direction at the point (2,5).
- Compute the total differential dw of the function $w = \tan^{-1}(xyz)$. 4.
- Evaluate $\int_{\frac{\pi}{2}}^{\pi} \int_{1}^{2} x \sin(xy) \, dy \, dx$. 5.
- Find the area of the plane region enclosed by the parabola $y = x^2$ and the line 6. y = 2x + 3.
- 7. Find the rational number represented by 0.784784784
- 8. Test the convergence of the series $\sum_{k=1}^{\infty} \left(1 + \frac{3}{k}\right)^k$.
- Find the Taylor series expansion of $\frac{1}{x+2}$ about x = 1. 9.
- Find the Euler coefficients of $f(x) = x^2$; $-\pi < x < \pi$. 10.

PART B

(Answer one full question from each module, each question carries 14 marks)

MODULE I

Solve the following system of equations by Gauss elimination and back 11. a) substitution method: $3x_1 + 3x_2 + 2x_3 = 1$, $x_1 + 2x_2 = 4$, $10x_2 + 3x_3 = -2$, (7) $2x_1 - 3x_2 - x_3 = 5.$

Find an orthogonal matrix which diagonalize the matrix $A = \begin{bmatrix} 2 & 0 & 1 \\ 0 & 2 & 0 \\ 1 & 0 & 2 \end{bmatrix}$. b) (7)

OR

- What kind of conic section is given by the quadratic form 12. a) $Q = 4x_1^2 + 6x_1x_2 - 4x_2^2 = 10$? Transform it to principal axes. Express (7) $x^{T} = [x_{1}, x_{2}]$ in terms of the new coordinate vector $y^{T} = [y_{1}, y_{2}]$. (7)
 - For what values of *a* and *b* do the equations b)

Duration: 3 Hours

392A1

Α

(7)

x + 2y + 3z = 6, x + 3y + 5z = 9, 2x + 5y + az = b have (i) no solution (ii) a unique solution (iii) more than one solution.

MODULE II

- 13. a) Let $w = \ln(3x^2 2y + 4z^3)$; $x = t^{1/2}$, $y = t^{2/3}$, $z = t^{-1}$. Use chain rule to find $\frac{dw}{dt}$ at t = 1. (7)
 - b) Locate all relative maxima, relative minima and saddle points of $f(x, y) = xy + \frac{2}{x} + \frac{4}{y}$. (7)

OR

14. a) Find the local linear approximation L(x, y, z) to $f(x, y, z) = \frac{x+y}{y+z}$ at the point P(-1, 1, 1). Compare the error in approximating f by L at the specified point (7) Q(-0.99, 0.99, 1.01).

b) If
$$u = f(2x - 3y, 3y - 4z, 4z - 2x)$$
 then prove that $\frac{1}{2}\frac{\partial u}{\partial x} + \frac{1}{3}\frac{\partial u}{\partial y} + \frac{1}{4}\frac{\partial u}{\partial z} = 0.$ (7)

MODULE III

- 15. a) Evaluate $\iint_R (x^2 + y^2) dy dx$ over the region in the positive quadrant for which $x + y \le 1$. (7)
 - b) Evaluate $\int_0^\infty \int_0^\infty \frac{e^{-y}}{y} dy dx$ by changing the order of integration. (7)

OR

- 16. a) Find the volume bounded by the cylinder $x^2 + y^2 = 4$ and the planes (7) y + z = 4 and z = 0.
 - b) Evaluate $\int_0^1 \int_0^{\sqrt{1-x^2}} \int_0^{\sqrt{1-x^2-y^2}} \frac{dzdydx}{\sqrt{1-x^2-y^2-z^2}}$ by changing to spherical polar coordinates. (7)

MODULE IV

- 17. a) Determine whether the series $2 + \frac{2}{5} + \frac{2}{5^2} + \frac{2}{5^3} + \dots$ converges and if so find the sum. (7)
 - b) Test the convergence of the series (i) $\sum_{k=1}^{\infty} (-1)^{k+1} \frac{5k}{3^k}$ (ii) $\sum_{k=1}^{\infty} \frac{1}{\frac{3}{8k^2-2k}}$ (7)

OR

- 18. a) Test the convergence of the series
 - (i) $\sum_{k=1}^{\infty} \frac{x^k}{2^k k^2}$; x > 0 (ii) $\sum_{k=1}^{\infty} \frac{\ln k}{k}$ (7)
 - b) Check whether the series absolutely convergent, conditionally convergent or divergent.

(i)
$$\sum_{k=1}^{\infty} (-1)^{k+1} \frac{3^{2k-1}}{k^2+1}$$
 (ii) $\sum_{k=1}^{\infty} \frac{(-1)^k}{\sqrt{k(k+1)}}$ (7)

MODULE V

392A1

- 19. a) Obtain the Fourier series to represent $f(x) = \frac{1}{4}(\pi x)^2$ in the interval $0 < x < 2\pi$ with $f(x + 2\pi) = f(x)$. Hence deduce that $\sum \frac{(-1)^{n-1}}{n^2} = \frac{\pi^2}{12}$.
 (7)
 - b) Find the Binomial series of $\frac{1}{(1+x)^2}$.

OR

- 20. a) Find the Fourier sine series for unity in the interval $(0, \pi)$ and hence show that $1 + \frac{1}{3^2} + \frac{1}{5^2} + \dots = \frac{\pi^2}{8}$. (7)
 - b) Obtain the Fourier series expansion of the function $f(x) = \begin{cases} -\pi ; when -\pi < x < 0 \\ x ; when 0 < x < \pi \end{cases}$ Also deduce that $\frac{1}{1^2} + \frac{1}{3^2} + \frac{1}{5^2} + \dots = \frac{\pi^2}{8}$ (7)

A