194A2 Total Pages: 2

| Register No.: | <br>Name: |  |
|---------------|-----------|--|
|               |           |  |

# SAINTGITS COLLEGE OF ENGINEERING (AUTONOMOUS)

(AFFILIATED TO APJ ABDUL KALAM TECHNOLOGICAL UNIVERSITY, THIRUVANANTHAPURAM)

# THIRD SEMESTERB. TECH DEGREE EXAMINATION (Regular), FEBRUARY 2022 **ROBOTICS AND AUTOMATION** (2020 SCHEME)

Course Code: 20RBT203

Course Name: **Electronic Devices and Circuits** 

Max. Marks: 100 **Duration: 3 Hours** 

### PART A

(Answer all questions. Each question carries 3 marks)

- 1. Design a circuit which is used to remove negative half cycle of the input signal.
- 2. Explain Q point.
- 3. Why FET is called voltage controlled device?
- 4. Compare MOSFET with JFET.
- 5. List the coupling schemes used in multistage amplifiers?
- 6. What is the impact of negative feedback on noise in amplifier circuits?
- 7. State Barkhausen criterion for sustained oscillation. What will happen to the oscillation if the magnitude of the loop gain is greater than unity?
- 8. Draw and explain the block diagram of OP AMP.
- 9. Draw the block diagram of IC555 Timer.
- 10. List out the various stages through which PLL operates.

### PART B

(Answer one full question from each module, each question carries 14 marks)

### **MODULE I**

11. Draw and explain DC load line. a)

- **(7)**
- b) Explain the working of diode compensation technique circuit for I<sub>CO</sub>.

**(7)** 

### OR

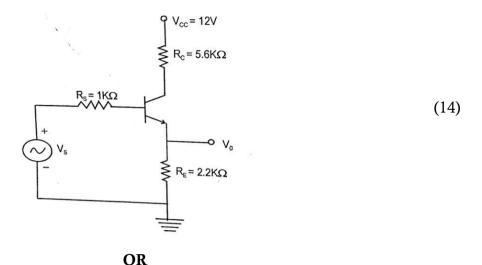
12. What is the need of biasing? Explain fixed bias and voltage divider bias in BJT.

(14)

#### **MODULE II**

- 13. Analyze common source amplifier using small signal equivalent model. a)
- (7)

b) What is Miller's theorem? Explain and prove it.


# **(7)**

### OR

14. Derive the expression for input resistance and output admittance for hybrid pi (14)common emitter transistor model.

### **MODULE III**

15. Determine D, Avf, Rif, Rof and R'of for the given circuit by identifying topology.



16. Explain the operation of the class B push pull power amplifier with neat diagram and list its advantages. (14)

### **MODULE IV**

- 17. a) Draw the circuit of Hartley oscillator and explain its working. Derive the expressions for frequency of oscillation and condition for starting of (10) oscillation.
  - b) In an Hartley oscillator has if  $L_1 = 5\text{mH}$ ,  $L_2 = 25\text{mH}$  and the frequency of its oscillation ranging from 700 KHz to 1 MHz. Determine the value of C over this frequency range. (4)

## OR

- 18. a) Draw the circuit diagram of a Wien bridge oscillator using BJT and derive the expression for frequency of oscillation. Explain how Bark Hausen's (9) criterion is satisfied in Wien bridge oscillator.
  - b) Design a circuit to obtain the output,  $V_0 = -4V_1 5V_2 V_3$ . (5)

### **MODULE V**

- 19. a) Explain the working of PLL with neat block diagram.
  - b) Explain how switching take place at UTP and LTP in a Schmitt trigger also plot the hysteresis curve. (6)

### OR

- 20. a) Explain the working of integrator circuit using operational amplifier. (7)
  - b) Explain the working of triangular wave generator circuit using operational amplifier. (7)

\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*