\section*{SAINTGITS COLLEGE OF ENGINEERING (AUTONOMOUS) \\ (AFFILIATED TO APJ ABDUL KALAM TECHNOLOGICAL UNIVERSITY, THIRUVANANTHAPURAM) \\ THIRD SEMESTER B.TECH DEGREE EXAMINATION (Regular), FEBRUARY 2022 ROBOTICS AND AUTOMATION \\ (2020 SCHEME) \\ | Course Code: | 20RBT205 |
| :--- | :--- |
| Course Name: | Digital Electronics |
| Max. Marks: | $\mathbf{1 0 0}$ | \\ Duration: 3 Hours}

PART A
 (Answer all questions. Each question carries 3 marks)

1. Perform arithmetic operation ($\mathbf{1 5} \mathbf{- 4}$) using 2 's complement system. Use 8 bits for each number including sign bit. Express result in binary form.
2. (i) Find the gray code of following binary number : 11010101
(ii) Convert the following gray code into its binary: 10101110
3. Determine the standard sum of products (SOP) form of the logic expression:
$F(A, B, C, D)=A B+A^{\prime} B D^{\prime}+C^{\prime} D$
4. Realize a full adder using two half adders.
5. What are the asynchronous inputs of a flip flop and discuss its functions?
6. List the applications of shift registers.
7. Distinguish between asynchronous and synchronous counters.
8. What is meant by accuracy, linearity and resolution of D/A Converter?
9. Compare static RAM and dynamic RAM.
10. Write a Verilog code for NAND gate.

PART B
 (Answer one full question from each module, each question carries 14 marks)
 MODULE I

11. a) Two numbers $\mathrm{A} \& \mathrm{~B}$ in Hex are given: $\mathrm{A}=85 \mathrm{CA}, \mathrm{B}=23 \mathrm{C} 6$
(i) Find the decimal equivalent of $A \& B$
(ii) Find the binary of $A \& B$
(iii) What is the sum of A \& B in binary?
b) With a neat diagram of TTL NAND gate, explain its operation. What is meant by sourcing and sinking?

OR

12. a) Convert (2AC5.D) ${ }_{16}$ to decimal, octal and binary.
b) Define the terms noise margin, propagation delay, fan in and power dissipation of logic families. Compare TTL and CMOS logic families showing the values of above-mentioned terms.

MODULE II

13. a) Minimize the following Boolean function using K map:
$\mathrm{F}(\mathrm{A}, \mathrm{B}, \mathrm{C}, \mathrm{D})=\Sigma \mathrm{m}(1,3,4,6,8,9,11,13,15)+\Sigma \mathrm{d}(0,2,14)$. Realize the circuit using basic logic gates.
b) Explain the working of a ripple carry adder with the help of a diagram.

OR

14. a) Describe decoders using suitable examples. Design a BCD to decimal decoder.
b) With necessary diagrams, explain the working of an 8:1 Multiplexer and a 1:8 Demultiplexer.

MODULE III

15. a) Define race-around condition. How is it eliminated? Illustrate with the help of necessary sketches.
b) Realize a JK flip flop using SR flip flop.

OR

16. a) Draw a 4-bit Serial In Parallel Out shift register and explain its working.
b) Design a MOD-12 asynchronous counter (ripple counter) using JK flip flop. Explain the working with truth table and timing diagram.

MODULE IV

17. a) Design the circuit of a 4-bit Johnson's counter. Show the timing signals also.
b) Design a synchronous counter using T Flip Flop to count the following sequence $0-3-4-6-0$.

OR

18. a) Explain the operation of successive approximation ADC with neat diagrams.
b) With neat diagrams, explain the operation of R-2R ladder DAC. Determine the resolution of (a) 6-bit DAC (b) 12-bit DAC in terms of percentage.

MODULE V

19. a) Implement the following functions using PLA.
$\mathrm{F}_{1}=\Sigma \mathrm{m}(3,5,7)$
$\mathrm{F}_{2}=\Sigma \mathrm{m}(4,5,7)$
b) Draw the structure of a 16×4 ROM.

OR
20. a) Differentiate between PROM, PAL and PLA.
b) Write the Verilog code for a full adder circuit.

