D 323A4 Total Pages: 2

Register No.:	Name:	
110,10101 110	 i tuille.	

SAINTGITS COLLEGE OF ENGINEERING (AUTONOMOUS)

(AFFILIATED TO APJ ABDUL KALAM TECHNOLOGICAL UNIVERSITY, THIRUVANANTHAPURAM)

THIRD SEMESTER B.TECH DEGREE EXAMINATION (Regular), FEBRUARY 2022 ROBOTICS AND AUTOMATION (2020 SCHEME)

Course Code: 20RBT205

4.

Course Name: Digital Electronics

Max. Marks: 100 Duration: 3 Hours

PART A

(Answer all questions. Each question carries 3 marks)

- 1. Perform arithmetic operation (15-4) using 2's complement system. Use 8 bits for each number including sign bit. Express result in binary form.
- 2. (i) Find the gray code of following binary number: 11010101
 - (ii) Convert the following gray code into its binary: 10101110
- 3. Determine the standard sum of products (SOP) form of the logic expression: F(A, B, C, D) = AB + A'BD' + BC'D

Realize a full adder using two half adders.

- 5. What are the asynchronous inputs of a flip flop and discuss its functions?
- 6. List the applications of shift registers.
- 7. Distinguish between asynchronous and synchronous counters.
- 8. What is meant by accuracy, linearity and resolution of D/A Converter?
- 9. Compare static RAM and dynamic RAM.
- 10. Write a Verilog code for NAND gate.

PART B

(Answer one full question from each module, each question carries 14 marks)

MODULE I

- 11. a) Two numbers A & B in Hex are given: A = 85CA, B = 23C6
 - (i) Find the decimal equivalent of A & B
 - (ii) Find the binary of A & B

(iii) What is the sum of A & B in binary?

b) With a neat diagram of TTL NAND gate, explain its operation. What is meant by sourcing and sinking? (8)

(6)

OR

- 12. a) Convert (2AC5.D)₁₆ to decimal, octal and binary. (6)
 - b) Define the terms noise margin, propagation delay, fan in and power dissipation of logic families. Compare TTL and CMOS logic families showing the values of above-mentioned terms.

MODULE II

		MODULE II	
13.	a)	Minimize the following Boolean function using K map:	
		$F(A, B, C, D) = \Sigma m(1, 3, 4, 6, 8, 9, 11, 13, 15) + \Sigma d(0, 2, 14)$. Realize the circuit	(8)
	4.	using basic logic gates.	(4)
	b)	Explain the working of a ripple carry adder with the help of a diagram.	(6)
		OR	
14.	a)	Describe decoders using suitable examples. Design a BCD to decimal decoder.	(6)
	b)	With necessary diagrams, explain the working of an 8:1 Multiplexer and a 1:8 Demultiplexer.	(8)
		MODULE III	
15.	a)	Define race-around condition. How is it eliminated? Illustrate with the help of	(0)
		necessary sketches.	(8)
	b)	Realize a JK flip flop using SR flip flop.	(6)
		OR	
16.	a)	Draw a 4-bit Serial In Parallel Out shift register and explain its working.	(6)
	b)	Design a MOD-12 asynchronous counter (ripple counter) using JK flip flop.	(8)
		Explain the working with truth table and timing diagram.	(0)
		MODULE IV	
17.	a)	Design the circuit of a 4-bit Johnson's counter. Show the timing signals also.	(4)
	b)	Design a synchronous counter using T Flip Flop to count the following sequence $0-3-4-6-0$.	(10)
		OR	
18.	a)	Explain the operation of successive approximation ADC with neat diagrams.	(5)
	b)	With neat diagrams, explain the operation of R-2R ladder DAC. Determine the	, ,
		resolution of (a) 6-bit DAC (b) 12-bit DAC in terms of percentage.	(9)
		MODULE V	
19.	a)	Implement the following functions using PLA.	
		$F_1 = \Sigma m (3,5,7)$	(7)
		$F_2 = \Sigma m (4,5,7)$	
	b)	Draw the structure of a 16 x 4 ROM.	(7)
		OR	
20.	a)	Differentiate between PROM, PAL and PLA.	(9)
	b)	Write the Verilog code for a full adder circuit.	(5)
