Name:

Α

Register No.:

(AFFILIATED TO APJ ABDUL KALAM TECHNOLOGICAL UNIVERSITY, THIRUVANANTHAPURAM)

FIRST SEMESTER M.C.A DEGREE EXAMINATION (Regular), FEBRUARY 2022

(2021 SCHEME)

Course Code: 21CA101

Course Name: Mathematical Foundations for Computing

Max. Marks: 60 **Duration: 3 Hours**

(2)

(4)

PART A

(Answer all questions. Each question carries 3 marks)

- 1. Prove that $\overline{A \cup B} = \overline{A} \cup \overline{B}$.
- Let f_1 and f_2 be functions from **R** to **R** such that $f_1(x) = x^2$ and $f_2(x) = x x^2$. What are 2. the functions $f_1 + f_2$ and $f_1 f_2$.
- Using Euclidean algorithm find gcd(12378, 3054). 3.
- 4. Show that, $-56 \equiv -11 \pmod{9}$.
- 5. How many edges are there in a graph with 10 vertices each of degree six?
- 6. Draw the complete bipartite graph $K_{4,3}$
- Find the rank of the matrix $\begin{bmatrix} 1 & 2 & 3 \\ 2 & 3 & 1 \\ 3 & 1 & 2 \end{bmatrix}$ 7.

- $\begin{bmatrix} 0 \\ 2 \end{bmatrix}$ 8. Find the characteristic roots (eigen values) of $\begin{bmatrix} -1 \\ 1 \end{bmatrix}$
- 9. Define Pearson coefficient of correlation.
- 10. State the principle of least squares.

PART B

(Answer one full question from each module, each question carries 6 marks)

MODULE I

11. Define a partially ordered set. a) Show that the set of subsets of a given set (its power set) ordered by b) inclusion is a partially ordered set.

OR

- 12. Define Reflexive and symmetric closures of a relation. (2) a)
 - b) Let $R = \{(1,2), (1,3), (2,2), (2,4), (4,3)\}$ be a binary relation on the set $A = \{(1,2), (1,3), (2,2), (2,4), (4,3)\}$ (4) {1,2,3,4}. Find the reflexive and symmetric closures of R.

MODULE II

13. Find the remainder obtained by dividing the sum $1! + 2! + 3! + \dots + 99! + 100!$ (6) by 12.

OR

14. Solve the non-homogeneous recurrence relation $a_{n+2} + 5a_{n+1} + 6a_n = 56(5^n)$, (6) given $a_0 = 4$, $a_1 = 0$.

389A1

(6)

MODULE III

15. Find the length of the shortest path between a and z in the weighted graph using Dijkstra's algorithm

А

OR

- 16. a) Draw a graph with the adjacency matrix $\begin{bmatrix} 0 & 1 & 1 & 1 \\ 1 & 0 & 1 & 0 \\ 1 & 1 & 0 & 0 \\ 1 & 0 & 0 & 0 \end{bmatrix}$ (3)
 - b) Define planar graph? Is K_4 , the complete graph on 4 vertices is planar? (3)

MODULE IV

17. Solve the system
$$x_1 + 2x_2 + x_3 = 2$$

 $3x_1 + x_2 - 2x_3 = 1$
 $4x_1 - 3x_2 - x_3 = 3$
 $2x_1 + 4x_2 + 2x_3 = 4$
(6)

OR

18. If $A = \begin{pmatrix} 7 & -2 & 1 \\ -2 & 10 & -2 \\ 1 & -2 & 7 \end{pmatrix}$, then find an orthogonal matrix *P* such that $P^{-1}AP$ (6) diagonal.

MODULE V

19. Fit a straight line y = ax + b to the following data

Х	1	2	3	4	5	6	7	(6)
Y	7	13	19	25	32	40	50	

OR

20. Find the regression lines for the following data on *X* and *Y*.

Х	65	66	67	67	68	69	70	72	(6
Y	67	68	65	68	72	72	69	71	(C
