Register No.:
Name:

SAINTGITS COLLEGE OF ENGINEERING (AUTONOMOUS)

(AFFILIATED TO APJ ABDUL KALAM TECHNOLOGICAL UNIVERSITY, THIRUVANANTHAPURAM)

FIRST SEMESTER M.C.A DEGREE EXAMINATION (Regular), FEBRUARY 2022

 (2021 SCHEME)
Course Code: 21CA101

Course Name: Mathematical Foundations for Computing

Max. Marks: 60

Duration: 3 Hours

PART A
(Answer all questions. Each question carries 3 marks)

1. Prove that $\overline{A \cup B}=\bar{A} \cup \bar{B}$.
2. Let f_{1} and f_{2} be functions from \mathbf{R} to \mathbf{R} such that $f_{1}(x)=x^{2}$ and $f_{2}(x)=x-x^{2}$. What are the functions $f_{1}+f_{2}$ and $f_{1} f_{2}$.
3. Using Euclidean algorithm find $\operatorname{gcd}(12378,3054)$.
4. Show that, $-56 \equiv-11(\bmod 9)$.
5. How many edges are there in a graph with 10 vertices each of degree six?
6. Draw the complete bipartite graph $K_{4,3}$
7. Find the rank of the matrix $\left[\begin{array}{lll}1 & 2 & 3 \\ 2 & 3 & 1 \\ 3 & 1 & 2\end{array}\right]$
8. Find the characteristic roots (eigen values) of $\left[\begin{array}{cc}-1 & 0 \\ 1 & 2\end{array}\right]$
9. Define Pearson coefficient of correlation.
10. State the principle of least squares.

PART B
 (Answer one full question from each module, each question carries 6 marks)

MODULE I

11. a) Define a partially ordered set.
b) Show that the set of subsets of a given set (its power set) ordered by inclusion is a partially ordered set.
12. a) Define Reflexive and symmetric closures of a relation.
b) Let $R=\{(1,2),(1,3),(2,2)(2,4)(4,3)\}$ be a binary relation on the set $A=$ $\{1,2,3,4\}$. Find the reflexive and symmetric closures of R.

MODULE II

13. Find the remainder obtained by dividing the sum $1!+2!+3!+\cdots+99!+100$! by 12 .

OR

14. Solve the non-homogeneous recurrence relation $a_{n+2}+5 a_{n+1}+6 a_{n}=56\left(5^{n}\right)$, given $a_{0}=4, a_{1}=0$.

MODULE III

15. Find the length of the shortest path between a and z in the weighted graph using Dijkstra's algorithm

OR

16. a) Draw a graph with the adjacency matrix $\left[\begin{array}{llll}0 & 1 & 1 & 1 \\ 1 & 0 & 1 & 0 \\ 1 & 1 & 0 & 0 \\ 1 & 0 & 0 & 0\end{array}\right]$
b) Define planar graph? Is K_{4}, the complete graph on 4 vertices is planar?

MODULE IV

17. Solve the system $x_{1}+2 x_{2}+x_{3}=2$

$$
\begin{gather*}
3 x_{1}+x_{2}-2 x_{3}=1 \\
4 x_{1}-3 x_{2}-x_{3}=3 \\
2 x_{1}+4 x_{2}+2 x_{3}=4 \tag{6}
\end{gather*}
$$

OR

18. If $A=\left(\begin{array}{llr}7 & -2 & 1 \\ -2 & 10 & -2 \\ 1 & -2 & 7\end{array}\right)$, then find an orthogonal matrix P such that $P^{-1} A P$ diagonal.

MODULE V

19. Fit a straight line $y=a x+b$ to the following data

X	1	2	3	4	5	6	7
Y	7	13	19	25	32	40	50

OR

20. Find the regression lines for the following data on X and Y.

X	65	66	67	67	68	69	70	72
Y	67	68	65	68	72	72	69	71

