Name:

SAINTGITS COLLEGE OF ENGINEERING (AUTONOMOUS)

(AFFILIATED TO APJ ABDUL KALAM TECHNOLOGICAL UNIVERSITY, THIRUVANANTHAPURAM)

FIRST SEMESTER M.TECH DEGREE EXAMINATION (Regular), FEBRUARY 2022

(VLSI & Embedded Systems)

(2021 Scheme)

Course Code : 21VE102

Course Name: **Advanced Digital Design**

Max. Marks : 60

PART A

(Answer all questions. Each question carries 3 marks)

- Define Essential Prime Implicants with an example. 1
- 2. Draw the Mealy state diagram for 010 overlapping sequence detector.
- Draw the logic circuit for the following Boolean function. F= AB'+BC. Analyze the 3. possibility of static 1 hazard in the circuit.
- 4. Draw ASM chart for the function Y=A+BC.
- 5. Draw the circuit of a 4-bit up counter.
- Draw the High-Level State Diagram for a Soda Dispensing system. 6.
- Define Latency and Throughput. 7.
- 8. Write the Verilog HDL code for a 16 bit register as part of a laser-based distance measuring system data path.

PART B

(Answer one full question from each module, each question carries 6 marks)

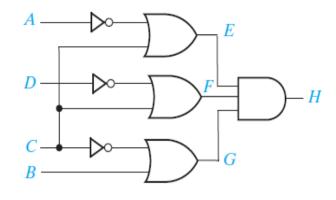
MODULE I

9. Draw the Mealy State Diagram and State Table of sequence detector to detect input (6) sequences 0101 or 1001. The circuit resets after every four inputs.

OR

10. Draw the logic circuit of a synchronous decade counter and write down the Verilog (6)HDL code for it.

MODULE II


11. For the circuit shown in the figure assume the inverters have a delay of 1 ns and the other gates have a delay of 2 ns.

Initially A = B = C = 0 and D = 1; C changes to 1 at time 2 ns. Draw a timing diagram and identify the transients that occur. Modify the circuit to eliminate the (6)hazards, if any.

Register No.:

Duration: 3 Hours

(6)

OR

12. Using an example describe the method of avoiding critical races in a circuit.

MODULE III

13. Design a 4 input register with 2 control inputs s0 and s1; 4 data inputs i0,i1,i2,i3; and 4 data outputs q0,q1,q2,q3; When s1s0=00,the register maintains its value. When s1s0=01, the register set its outputs to 1111 value. When s1s0=10, the register shifts the data right by one bit. When s1s0=11, the register loads its inputs. (6)

OR

14. Design an ALU with two 8-bit inputs A and B, and control inputs x, y, and z. The ALU should support the operations described in table. Use an 8-bit adder and an arithmetic/logic extender.

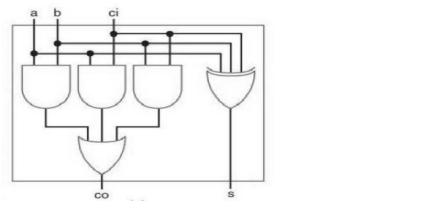
Inputs		its	Operation
Х	У	Ζ	
0	0	0	S = A - B
0	0	1	S = A + B
0	1	0	S = A * 8
0	1	1	S = A / 8
1	0	0	S = A NAND B (bitwise NAND)
1	0	1	S = A XOR B (bitwise XOR)
1	1	0	S = Reverse A (bit reversal)
1	1	1	S = NOT A (bitwise complement)

MODULE IV

15. Create a data path for a laser-based distance measuring system from its HLSM. (6)

OR

16. What is the significance of Microprogrammed control unit in microprocessor design? Explain few control signal generations. (6)


MODULE V

17. Convert the following C-like code, which calculates the greatest common divisor (GCD) of the two 8-bit numbers a and b, into a high-level state machine. Inputs: byte a, byte b, bit go
Outputs: byte gcd, bit done

GCD: while(1) { while(!go); done = 0;while (a != b){ if(a > b) { a = a - b;} else { b = b - a;} } gcd = a;done = 1; }

OR

18. A 4-bit carry-ripple adder is designed using the full adder circuit shown in the figure. Assume all gates have a delay of 2 ns. Determine the critical path for the 4-bit carry-ripple adder in the following conditions (a) wires have no delay, (b) wires have a delay of 1 ns.

MODULE VI

19. For each of the following functions, find all of the prime implicants using the Quine McCluskey method.

 $f(a, b, c, d) = \Sigma m(2, 4, 5, 6, 9, 10, 11, 12, 13, 15)$. Realize the optimized logic (6) circuit.

OR

20. Describe the RTL design optimizations and trade-offs.

(6)

(6)