SAINTGITS COLLEGE OF ENGINEERING (AUTONOMOUS)

(AFFILIATED TO APJ ABDUL KALAM TECHNOLOGICAL UNIVERSITY, THIRUVANANTHAPURAM)
FIRST SEMESTER M.TECH DEGREE EXAMINATION (Regular), FEBRUARY 2022
(VLSI \& Embedded Systems)
(2021 Scheme)
Course Code : 21VE102
Course Name: Advanced Digital Design
Max. Marks : 60
Duration: 3 Hours

PART A
 (Answer all questions. Each question carries 3 marks)

1. Define Essential Prime Implicants with an example.
2. Draw the Mealy state diagram for 010 overlapping sequence detector.
3. Draw the logic circuit for the following Boolean function. $F=A B \prime+B C$. Analyze the possibility of static 1 hazard in the circuit.
4. Draw ASM chart for the function $Y=A+B C$.
5. Draw the circuit of a 4-bit up counter.
6. Draw the High-Level State Diagram for a Soda Dispensing system.
7. Define Latency and Throughput .
8. Write the Verilog HDL code for a 16 bit register as part of a laser-based distance measuring system data path.

PART B
 (Answer one full question from each module, each question carries 6 marks)

MODULE I

9. Draw the Mealy State Diagram and State Table of sequence detector to detect input sequences 0101 or 1001 . The circuit resets after every four inputs.

OR
10. Draw the logic circuit of a synchronous decade counter and write down the Verilog HDL code for it.

MODULE II

11. For the circuit shown in the figure assume the inverters have a delay of 1 ns and the other gates have a delay of 2 ns .
Initially $A=B=C=0$ and $D=1 ; C$ changes to 1 at time 2 ns. Draw a timing diagram and identify the transients that occur. Modify the circuit to eliminate the hazards, if any.

OR
12. Using an example describe the method of avoiding critical races in a circuit.

MODULE III

13. Design a 4 input register with 2 control inputs s0 and s1; 4 data inputs i0,i1,i2,i3; and 4 data outputs $\mathrm{q} 0, \mathrm{q} 1, \mathrm{q} 2, \mathrm{q} 3$; When $\mathrm{s} 1 \mathrm{~s} 0=00$, the register maintains its value. When s1s $0=01$, the register set its outputs to 1111 value. When $\mathrm{s} 1 \mathrm{~s} 0=10$, the register shifts the data right by one bit. When $s 1 s 0=11$, the register loads its inputs.

OR

14. Design an ALU with two 8 -bit inputs A and B, and control inputs x, y, and z . The ALU should support the operations described in table. Use an 8 -bit adder and an arithmetic/logic extender.

Inputs			Operation
x	y	z	
0	0	0	$\mathrm{~S}=\mathrm{A}-\mathrm{B}$
0	0	1	$\mathrm{~S}=\mathrm{A}+\mathrm{B}$
0	1	0	$\mathrm{~S}=\mathrm{A} * 8$
0	1	1	$\mathrm{~S}=\mathrm{A} / 8$
1	0	0	$\mathrm{~S}=\mathrm{A} \mathrm{NAND} \mathrm{B} \mathrm{(bitwise} \mathrm{NAND)}$
1	0	1	$\mathrm{~S}=\mathrm{A}$ XOR B (bitwise XOR)
1	1	0	$\mathrm{~S}=$ Reverse A (bit reversal)
1	1	1	$\mathrm{~S}=$ NOT A (bitwise complement)

MODULE IV
15. Create a data path for a laser-based distance measuring system from its HLSM.

OR

16. What is the significance of Microprogrammed control unit in microprocessor design? Explain few control signal generations.

MODULE V

17. Convert the following C-like code, which calculates the greatest common divisor (GCD) of the two 8-bit numbers a and b, into a high-level state machine.
Inputs: byte a, byte b, bit go
Outputs: byte gcd, bit done
```
GCD:
while(1) \{
while(!go);
done \(=0\);
while ( \(\mathrm{a}!=\mathrm{b}\) )
\{
if( \(a>b)\{\)
\(\mathrm{a}=\mathrm{a}-\mathrm{b}\);
\}
else \{
            \(\mathrm{b}=\mathrm{b}-\mathrm{a} ;\)
\}
\}
\(\operatorname{gcd}=\mathrm{a}\);
done \(=1\);
\}
```

OR
18. A 4-bit carry-ripple adder is designed using the full adder circuit shown in the figure. Assume all gates have a delay of 2 ns . Determine the critical path for the 4 -bit carryripple adder in the following conditions (a) wires have no delay, (b) wires have a delay of 1 ns .

MODULE VI

19. For each of the following functions, find all of the prime implicants using the Quine McCluskey method.
$\mathrm{f}(\mathrm{a}, \mathrm{b}, \mathrm{c}, \mathrm{d})=\Sigma \mathrm{m}(2,4,5,6,9,10,11,12,13,15)$. Realize the optimized logic circuit.

OR

20. Describe the RTL design optimizations and trade-offs.
