Duration: 3 Hours

SAINTGITS COLLEGE OF ENGINEERING (AUTONOMOUS)

(AFFILIATED TO APJ ABDUL KALAM TECHNOLOGICAL UNIVERSITY, THIRUVANANTHAPURAM)

FIRST SEMESTER M.TECH DEGREE EXAMINATION (Regular), FEBRUARY 2022 (COMMON TO GEOMECHANICS & STRUCTURES AND STRUCTURAL ENGINEERING & CONSTRUCTION MANAGEMENT) (2021 Scheme)

Course Code : 21GS101

Course Name: Applied Mathematics for Civil Engineers

Max. Marks : 60

Non-programmable scientific calculators may be permitted for this examination

PART A

(Answer all questions. Each question carries 3 marks)

- 1. Show that the Beta function, $\beta(m, n)$ is symmetric.
- 2. Write the recurrence formula for the Gamma function, $\Gamma(n)$.
- 3. Show that $y(x) = \int_0^x t(t-x)y(t)dt + 0.5x^2$ is equivalent to the initial value problem, y'' + xy = 1; y(0) = y'(0) = 0.
- 4. Solve the integral equation $\int_0^x y(t)y(x-t)dt = 4\sin(9x)$.
- 5. Solve the first order partial differential equation, px + qy = z.
- 6. Find the inverse Laplace transform of $log\left(\frac{s^2+1}{s(s+1)}\right)$.
- 7. Classify the second order partial differential equation, $U_{xx} + 4U_{xy} + (x^2 + 4y^2)U_{yy} = sin(x + y)$.
- 8. Form the computational structure for numerical solution of the Laplace's equation and write the Diagonal Five Point Formula.

PART B

(Answer one full question from each module, each question carries 6 marks)

MODULE I

9. Derive the generating function for $J_n(x)$.

(6)

OR

10. Prove the relation between the Beta and the Gamma functions. (6)

MODULE II

11. Find the Fourier Transform of $f(x) = \begin{cases} 1; |x| < 1\\ 0; |x| > 1 \end{cases}$ (6)

OR

12. Find the Laplace transform of (i) $\frac{\cos 2t - \cos 3t}{t}$ (ii) $te^{2t} \sin 3t$. (6)

Page 1 of 2

113A1

(6)

MODULE III

13. Show that the function $y(x) = xe^x$ is a solution of the integral equation $y(x) = \sin(x) + 2\int_0^x \cos(x-t) y(t) dt$. (6)

OR

14. Solve the Fredhom integral equation $y(x) = 1 + \lambda \int_0^1 x t y(t) dt$. (6)

MODULE IV

15. Solve the Partial differential equation $q + px = p^2$. (6)

OR

16. Solve $p - q = \log(x + y)$.

MODULE V

17. Find a solution of the equation $\frac{\partial^2 u}{\partial x^2} = \frac{\partial u}{\partial y} + 2u$, using the method of separation of variables. (6)

OR

18. A string is stretched and fastened to two points *l* appart. Motion is started by displacing the string in the form $y = asin\left(\frac{\pi x}{l}\right)$ from which it is released at time t=0. Show that the displacement of any point at a distance *x* from one end at time *t* is given by $y(x, t) = asin\left(\frac{\pi x}{l}\right)cos\left(\frac{\pi ct}{l}\right)$. (6)

MODULE VI

19. Solve the Laplace's equation for the square mesh with boundary values $b_1 = 60, b_2 = 60, b_3 = 60, b_4 = 60, b_5 = 50, b_6 = 40, b_7 = 30, b_8 = 20, b_9 = 10, b_{10} = (6) 0, b_{11} = 20, b_{12} = 40.$

OR

20. Solve numerically the second order partial differential equation, $\nabla^2 u = 0$ with the given boundary conditions $u(0, y) = 0, u(4, y) = 12 + y, 0 \le y \le 4; u(x, 0) =$ (6) $3x, u(x, 4) = x^2, 0 \le x \le 4$ with unit displacement in both x and y directions.

A

Page 2 of 2