SAINTGITS COLLEGE OF ENGINEERING (AUTONOMOUS)
 (AFFILIATED TO APJ ABDUL KALAM TECHNOLOGICAL UNIVERSITY, THIRUVANANTHAPURAM)
 FIRST SEMESTER M.TECH DEGREE EXAMINATION (Regular), FEBRUARY 2022
 (COMMON TO GEOMECHANICS \& STRUCTURES AND STRUCTURAL ENGINEERING \& CONSTRUCTION MANAGEMENT)
 (2021 Scheme)
 Course Code : 21GS101
 Course Name: Applied Mathematics for Civil Engineers
 Max. Marks : 60
 Duration: 3 Hours

Non-programmable scientific calculators may be permitted for this examination

PART A
 (Answer all questions. Each question carries 3 marks)

1. Show that the Beta function, $\beta(m, n)$ is symmetric.
2. Write the recurrence formula for the Gamma function, $\Gamma(n)$.
3. Show that $y(x)=\int_{0}^{x} t(t-x) y(t) d t+0.5 x^{2}$ is equivalent to the initial value problem, $y^{\prime \prime}+x y=1 ; y(0)=y^{\prime}(0)=0$.
4. Solve the integral equation $\int_{0}^{x} y(t) y(x-t) d t=4 \sin (9 x)$.
5. Solve the first order partial differential equation, $p x+q y=z$.
6. Find the inverse Laplace transform of $\log \left(\frac{s^{2}+1}{s(s+1)}\right)$.
7. Classify the second order partial differential equation, $U_{x x}+4 U_{x y}+\left(x^{2}+4 y^{2}\right) U_{y y}=$ $\sin (x+y)$.
8. Form the computational structure for numerical solution of the Laplace's equation and write the Diagonal Five Point Formula.

> PART B
> (Answer one full question from each module, each question carries 6 marks)
> MODULE I
9. Derive the generating function for $J_{n}(x)$.

OR
10. Prove the relation between the Beta and the Gamma functions.

MODULE II
11. Find the Fourier Transform of $f(x)=\left\{\begin{array}{l}1 ;|x|<1 \\ 0 ;|x|>1\end{array}\right.$.

OR
12. Find the Laplace transform of (i) $\frac{\cos 2 t-\cos 3 t}{t}$ (ii) $t e^{2 t} \sin 3 t$.

MODULE III

13. Show that the function $y(x)=x e^{x}$ is a solution of the integral equation $y(x)=$ $\sin (x)+2 \int_{0}^{x} \cos (x-t) y(t) d t$.

OR

14. Solve the Fredhom integral equation $y(x)=1+\lambda \int_{0}^{1} x t y(t) d t$.

MODULE IV

15. Solve the Partial differential equation $q+p x=p^{2}$.

OR
16. Solve $p-q=\log (x+y)$.

MODULE V

17. Find a solution of the equation $\frac{\partial^{2} u}{\partial x^{2}}=\frac{\partial u}{\partial y}+2 u$, using the method of separation of variables.

OR

18. A string is stretched and fastened to two points l appart. Motion is started by displacing the string in the form $y=\operatorname{asin}\left(\frac{\pi x}{l}\right)$ from which it is released at time $\mathrm{t}=0$. Show that the displacement of any point at a distance x from one end at time t is given by $y(x, t)=\operatorname{asin}\left(\frac{\pi x}{l}\right) \cos \left(\frac{\pi c t}{l}\right)$.

MODULE VI

19. Solve the Laplace's equation for the square mesh with boundary values $b_{1}=$ $60, b_{2}=60, b_{3}=60, b_{4}=60, b_{5}=50, b_{6}=40, b_{7}=30, b_{8}=20, b_{9}=10, b_{10}=$ $0, b_{11}=20, b_{12}=40$.

OR

20. Solve numerically the second order partial differential equation, $\nabla^{2} u=0$ with the given boundary conditions $u(0, y)=0, u(4, y)=12+y, 0 \leq y \leq 4 ; u(x, 0)=$ $3 x, u(x, 4)=x^{2}, 0 \leq x \leq 4$ with unit displacement in both x and y directions.
