SAINTGITS COLLEGE OF ENGINEERING (AUTONOMOUS)
 (AFFILIATED TO APJ ABDUL KALAM TECHNOLOGICAL UNIVERSITY, THIRUVANANTHAPURAM)
 FIRST SEMESTER M.TECH DEGREE EXAMINATION (Regular), FEBRUARY 2022
 (Power Systems)
 (2021 Scheme)
 Course Code :
 Course Name: Applied Mathematics
 Max. Marks : 60

PART A
(Answer all questions. Each question carries 3 marks)

1. Find the Z-transform of a^{n}.
2. Find the extremals of the functional $\int_{a}^{b}\left(y^{2}-y^{\prime 2}\right) d x$.
3. Show that $y(x)=e^{x}\left(2 x-\frac{2}{3}\right)$ is a solution of the Fredholm integral equation $y(x)+$ $2 \int_{0}^{1} e^{x-t} y(t) d t=2 x e^{x}$.
4. Define point estimator. What are the desirable properties of a good estimator?
5. Give the normal equations for a straight line $y=a+b x$ using method of least squares.
6. Derive Crank - Nicolson formula for the one-dimensional heat equation.
7. Show that the vectors $(1,1,2,4),(2,-1,-5,2),(1,-1,-4,0),(2,1,1,6)$ are linearly dependent.
8. Let T and U be the linear operators on R^{2} defined by $T\left(x_{1}, x_{2}\right)=\left(-x_{2}, x_{1}\right)$ and $U\left(x_{1}, x_{2}\right)=\left(0, x_{2}\right)$. Find the transformations $U+T, U T$ and T^{2}.

PART B

(Answer one full question from each module, each question carries 6 marks)

MODULE I

9. Find the inverse Z-transform of $\frac{4 z^{2}-2 z}{z^{3}-5 z^{2}+8 z-4}$ by method of partial fractions.

> OR
10. Solve using Z-transform , $y_{n+2}-4 y_{n}=0$, given that $y_{0}=0, y_{1}=2$.

MODULE II

11. Show that the geodesics on a plane are straight lines.

OR
12. Find the extremal of the functional $\int_{0}^{\pi}\left(y^{\prime 2}-y^{2}\right) d x$ under the conditions $y(0)=0$ and $y(\pi)=1$ and subject to the constraint $\int_{0}^{\pi} y d x=1$.

MODULE III

13. Solve the Volterra integral equation $y(x)=\frac{1}{6} \int_{0}^{x}(x-t)^{3} y(t) d t$ by the Transform method.

OR

14. Solve the Volterra integral equation $y(x)=1+\int_{0}^{x} y(t) d t$ by the successive approximation method.

MODULE IV

15. Find the Maximum Likelihood Estimator of μ and σ^{2}, using the random sample $x_{1}, x_{2}, \ldots, x_{n}$ taken from the normal population $N(\mu, \sigma)$.

OR

16. If $x_{1}, x_{2}, x_{3}, x_{4}$ are independent observations from a population with mean μ and variance σ^{2}. Compare the efficiencies of $t_{1}=\frac{2 x_{1}+x_{2}}{3}, t_{2}=\frac{2 x_{1}+3 x_{2}}{5}, t_{3}=\frac{x_{1}+x_{2}+x_{3}+x_{4}}{4}$.
Identify the more efficient estimator.

MODULE V

17. Use the method of least squares to fit an equation of the form $y=a x+b$ to the following data

$$
\begin{equation*}
y(1)=6, y(2)=7, y(3)=9, y(4)=10, y(5)=12 \tag{6}
\end{equation*}
$$

OR

18. Fit a parabola of the form $y=a x^{2}+b x+c$ to the following data.

x	0	1	2	3	4
y	1	1.8	1.3	2.5	6.3

MODULE VI

19. Show that the vectors $\alpha_{1}=(1,0,1), \alpha_{2}=(1,2,1), \alpha_{3}=(0,1,1)$ form a basis for R^{3}. Express each of the standard basis vectors as linear combinations of α_{1}, α_{2} and α_{3}.

OR

20. Define an inner product space. Show that $\langle x, y\rangle=x_{1} y_{1}-x_{2} y_{1}-x_{1} y_{2}+4 x_{2} y_{2}$ defines an inner product in R^{2}.
