Name:

Register No.:

SAINTGITS COLLEGE OF ENGINEERING (AUTONOMOUS)

(AFFILIATED TO APJ ABDUL KALAM TECHNOLOGICAL UNIVERSITY, THIRUVANANTHAPURAM)

FIRST SEMESTER M.TECH DEGREE EXAMINATION (Regular), FEBRUARY 2022

(Power Systems)

(2021 Scheme)

Course Code : 21PS101

Course Name: Applied Mathematics

Max. Marks : 60

Duration: 3 Hours

(6)

PART A

(Answer all questions. Each question carries 3 marks)

- 1. Find the Z-transform of a^n .
- 2. Find the extremals of the functional $\int_a^b (y^2 y'^2) dx$.
- 3. Show that $y(x) = e^x (2x \frac{2}{3})$ is a solution of the Fredholm integral equation $y(x) + 2\int_0^1 e^{x-t}y(t)dt = 2xe^x$.
- 4. Define point estimator. What are the desirable properties of a good estimator?
- 5. Give the normal equations for a straight line y = a + bx using method of least squares.
- 6. Derive Crank Nicolson formula for the one-dimensional heat equation.
- 7. Show that the vectors (1, 1, 2, 4), (2, -1, -5, 2), (1, -1, -4, 0), (2, 1, 1, 6) are linearly dependent.
- 8. Let T and U be the linear operators on R^2 defined by $T(x_1, x_2) = (-x_2, x_1)$ and $U(x_1, x_2) = (0, x_2)$. Find the transformations U + T, UT and T^2 .

PART B

(Answer one full question from each module, each question carries 6 marks)

MODULE I

9. Find the inverse Z-transform of
$$\frac{4z^2-2z}{z^3-5z^2+8z-4}$$
 by method of partial fractions. (6)

OR

10. Solve using Z-transform, $y_{n+2} - 4y_n = 0$, given that $y_0 = 0, y_1 = 2$. (6)

MODULE II

11. Show that the geodesics on a plane are *straight lines*.

OR

12. Find the extremal of the functional $\int_0^{\pi} (y'^2 - y^2) dx$ under the conditions y(0) = 0and $y(\pi) = 1$ and subject to the constraint $\int_0^{\pi} y dx = 1$. (6)

378A2

Α

Total Pages: 2

MODULE III

13. Solve the Volterra integral equation $y(x) = \frac{1}{6} \int_0^x (x-t)^3 y(t) dt$ by the Transform (6) method.

OR

14. Solve the Volterra integral equation $y(x) = 1 + \int_0^x y(t)dt$ by the successive approximation method. (6)

MODULE IV

15. Find the Maximum Likelihood Estimator of μ and σ^2 , using the random sample $x_1, x_2, ..., x_n$ taken from the normal population $N(\mu, \sigma)$. (6)

OR

16. If x_1, x_2, x_3, x_4 are independent observations from a population with mean μ and variance σ^2 . Compare the efficiencies of $t_1 = \frac{2x_1+x_2}{3}$, $t_2 = \frac{2x_1+3x_2}{5}$, $t_3 = \frac{x_1+x_2+x_3+x_4}{4}$. (6) Identify the more efficient estimator.

MODULE V

17. Use the method of least squares to fit an equation of the form y = ax + b to the following data (6)

$$y(1) = 6, y(2) = 7, y(3) = 9, y(4) = 10, y(5) = 12$$

OR

18. Fit a parabola of the form $y = ax^2 + bx + c$ to the following data.

5			8			
Х	0	1	2	3	4	(6)
у	1	1.8	1.3	2.5	6.3	

MODULE VI

19. Show that the vectors $\alpha_1 = (1,0,1), \alpha_2 = (1,2,1), \alpha_3 = (0,1,1)$ form a basis for R^3 . Express each of the standard basis vectors as linear combinations of α_1, α_2 and α_3 . (6)

OR

20. Define an inner product space. Show that $\langle x, y \rangle = x_1y_1 - x_2y_1 - x_1y_2 + 4x_2y_2$ (6) defines an inner product in R^2 .