SAINTGITS COLLEGE OF ENGINEERING (AUTONOMOUS)
 (AFFILIATED TO APJ ABDUL KALAM TECHNOLOGICAL UNIVERSITY, THIRUVANANTHAPURAM)
 FIRST SEMESTER M.TECH DEGREE EXAMINATION (Regular), FEBRUARY 2022
 (COMPUTER SCIENCE \& SYSTEM ENGINEERING)
 (2021 Scheme)
 Course Code: 21SE101
 Course Name: Discrete Structures for Computer Science
 Max. Marks:
 60
 Duration: 3 Hours

PART A
 (Answer all questions. Each question carries 3 marks)

1. Let $\mathrm{R}=\left\{(\mathrm{x}, \mathrm{y}) / \mathrm{x}, \mathrm{y} \in \mathrm{Z} \& \mathrm{x}^{2}=\mathrm{y}^{2}\right\}$. Show that R is an equivalence relation on Z .
2. Define Complete lattice and Bounded lattice.
3. Show that $p \rightarrow(p \vee \sim q)$ is a tautology.
4. In how many ways can the letters of the word 'ARRANGE' be arranged such that no two R's occur together.
5. Define group homomorphism with an example.
6. Prove that every cyclic group is Abelian.
7. For a Ring $<\mathrm{R},+, .>$, Prove that
a. the additive identity of the ring is unique.
b. the additive inverse of each element in a ring is unique.
8. Determine the multiplicative inverse of the matrix $\left[\begin{array}{ll}1 & 2 \\ 3 & 7\end{array}\right]$ in the ring $<\mathrm{M}_{2}(\mathrm{z}),+, \times>$.

PART B
 (Answer one full question from each module, each question carries 6 marks)
 MODULE I

9. Let $\mathrm{f}: \mathrm{R} \backslash\{3\} \rightarrow \mathrm{R} \backslash\{1\}$ defined by $\mathrm{f}(\mathrm{x})=\frac{x-2}{x-3}$. Show that f is bijective and find the inverse of f.

OR

10. Let $\mathrm{A}=\{1,2,3 \ldots ., 12\}$ and let R be the equivalence relation on $\mathrm{A} \times \mathrm{A}$ defined by $(a, b) R(c, d)$ if and only if $a+d=b+c$. Prove that R is an equivalence relation and find the equivalence class of $(3,2)$.

MODULE II

11. Let $\left(A, R_{1}\right)$ and $\left(B, R_{2}\right)$ be two Posets on $A \times B$ defined by a relation R by $(a, b) R$ (x, y) if $a R_{1} x$ and $b R_{2} y$. Prove that R is a partial order.

OR

12. Define Distributive lattice. Show that lattice $\left(\mathrm{Z}^{+}, \leq\right)$is distributive.

MODULE III

13. Show that the following argument is valid:

It is not sunny in the afternoon and it is colder than yesterday. We will go for swimming if it sunny. If we do not go for swimming, we will take a trip. If we take a trip, then we will be home by sunset. Therefore, we will be at home.

OR

14. State and prove the soundness of propositional logic.

MODULE IV

15. Determine the number of integer solution of $X_{1}+X_{2}+X_{3}+X_{4}=32$ where
a. $\mathrm{X}_{\mathrm{i}} \geq 01 \leq \mathrm{i} \leq 4$
b. $X_{1}, X_{2} \geq 5 \quad \& X_{3}, X_{4} \geq 7$
c. $\mathrm{X}_{\mathrm{i}} \geq 81 \leq \mathrm{i} \leq 4$

OR

16. Let X be the binomial random variable that consists the number of success, each with probability p, among n, Bernoulli trials. Prove that $E(X)=n p$

MODULE V

17. Consider $G=\{1,-1, i,-i\}$ where $i=\sqrt{-1}$. Prove that G is a cyclic group under usual multiplication.

OR

18. Let G be a finite group and H be a subgroup of G. Prove that order of H divides order of G. Is the converse always true?

MODULE VI

19. Let $U=\{1,2\}$ and $R=P(U)$ denotes the power set of U. Define + and * on the elements of R by
$A+B=\{x / x \in A$ or $x \in B$, but not both $\}$
$A * B=A \cap B$
Check whether $<\mathrm{R},+, *>$ is a commutative ring with unity

OR

20. Find $[a]^{-1}$ in Z_{1009} for
21. $\mathrm{a}=17$
22. $a=777$
