Dogistor No.	Mama	
Register no	 Iname.	

SAINTGITS COLLEGE OF ENGINEERING (AUTONOMOUS)

277A3

(AFFILIATED TO APJ ABDUL KALAM TECHNOLOGICAL UNIVERSITY, THIRUVANANTHAPURAM)

FIRST SEMESTER INTEGRATED M.C.A DEGREE EXAMINATION (R), FEBRUARY 2022 (2020 SCHEME)

Course Code: **20IMCAT103**

Course Name: **Basic Mathematics**

Max. Marks: 60

PART A

(Answer all questions. Each question carries 3 marks)

- Define Cartesian product of two sets with an example? 1.
- 2. List the elements of the set $S = \{x:x^2 = 1, x \in Z\}$ and find n(S).
- 3. Define Relation? How many relations are there on a set with n elements?
- Differentiate Domain, Codomain and Range of a function with an example? 4.
- 5. When will be a function is said to be one-one and onto?
- Define an Invertible function with an example. 6.
- 7. Find the derivative of $y = x^5 + x^3$.
- 8. Give a geometrical meaning of Differentiability.
- State the fundamental theorem of Calculus. 9.
- 10. Evaluate $\int_{1}^{3} (x^{2} + x) dx$

PART B

(Answer one full question from each module, each question carries 6 marks)

MODULE I

11.	a)	State and prove Associative property of set operations.	(3)
	b)	Let A, B and C be sets. Show that $\overline{A \cup (B \cap C)} = (\overline{C} \cup \overline{B}) \cap \overline{A}$.	(3)

OR

- 12. If X and Y are two sets such that n(X) = 17, n(Y) = 23 and $n(X \cup Y) = 17$ a) (3)38, Find $n(X \cap Y)$?
 - In a school, there are 20 teachers who teach mathematics or physics. Of these, b) 12 teach mathematics and 4 teach both physics and mathematics. How many (3) teach physics?

MODULE II

- 13. Define an Equivalence Relations? a)
 - Let R be a relation on the set of real numbers such that aRb if and only if a-b b) (4) is an integer. Check whether R is an equivalence relation

OR

Duration: 3 Hours

(2)

277A3

- 14. a) Define a Partial ordering on a set
 - b) Let $R = \{(a, b), (a, d), (b, b), (b, d), (c, a), (c, b), (d, b)\}$ be a relation on $\{a, b, c, d\}$. Draw the directed graph associated with R and using this check (4) whether the relation is reflexive, symmetric and antisymmetric?

MODULE III

15. Let the function f(x) = 5x+1 from *R* to *R*. Is f an invertible and if it is invertible, then find its inverse? (6)

OR

16. a) Define composition of a function with geometrical interpretation (3) b) Let $f(x) = x^2 + 2$, g(x) = 2x + 3, h(x) = x + 3, find $f_0 g$, $g_0 h$ and $h_0 f$? (3)

MODULE IV

17.	a)	Find $f'(\frac{\pi}{2})$ if $f(x) = \sqrt{1 + \cos x}$	(3)
	1-)	$T_{in} = \frac{1}{2} + \frac{1}{$	(2)

b) Find the derivative of $y = (x^2 + 1)(x^3 + 3)$ (3)

OR

a) Find y'' if y = secx. b) Find y'(1) & y'(2), if $y(x) = \left(x + \frac{1}{x}\right)^2$.

MODULE V

19. a) Evaluate
$$\int (3t^2 + \frac{t}{2})dt$$
. (2)

b) Find the area of the region enclosed by the parabola $y = 2 - x^2$ and the line x + y = 0. (4)

OR

- 20. a) Find the area of the region between the x-axis and the graph of $f(x) = x^3 x^2 2x, -1 \le x \le 2$. (3)
 - b) Evaluate $\int_1^4 \left(\frac{3}{2}\sqrt{x} \frac{4}{x^2}\right) dx$.

Β

18.

(2)

(2)

(4)

(3)