SAINTGITS COLLEGE OF ENGINEERING (AUTONOMOUS)
 (AFFILIATED TO APJ ABDUL KALAM TECHNOLOGICAL UNIVERSITY, THIRUVANANTHAPURAM)
 FIRST SEMESTER INTEGRATED M.C.A DEGREE EXAMINATION (R), FEBRUARY 2022 (2020 SCHEME)

Course Code:	20IMCAT103
Course Name:	Basic Mathematics Max. Marks:
	$\mathbf{6 0}$
	PART A
	(Answer all questions. Each question carries 3 marks)

1. Define Cartesian product of two sets with an example?
2. List the elements of the set $\mathrm{S}=\left\{\mathrm{x}: \mathrm{x}^{2}=1, x \in Z\right\}$ and find $n(S)$.
3. Define Relation? How many relations are there on a set with n elements?
4. Differentiate Domain, Codomain and Range of a function with an example?
5. When will be a function is said to be one-one and onto?
6. Define an Invertible function with an example.
7. Find the derivative of $y=x^{5}+x^{3}$.
8. Give a geometrical meaning of Differentiability.
9. State the fundamental theorem of Calculus.
10. Evaluate $\int_{1}^{3}\left(x^{2}+x\right) d x$

PART B
 (Answer one full question from each module, each question carries 6 marks)

MODULE I

11. a) State and prove Associative property of set operations.
b) Let A, B and C be sets. Show that $\overline{A \cup(B \cap C)}=(\bar{C} \cup \bar{B}) \cap \bar{A}$.

OR
12. a) If X and Y are two sets such that $n(X)=17, \mathrm{n}(\mathrm{Y})=23$ and $n(X \cup Y)=$ 38 , Find $n(X \cap Y)$?
b) In a school, there are 20 teachers who teach mathematics or physics. Of these, 12 teach mathematics and 4 teach both physics and mathematics. How many teach physics?

MODULE II

13. a) Define an Equivalence Relations?
b) Let R be a relation on the set of real numbers such that aRb if and only if $\mathrm{a}-\mathrm{b}$ is an integer. Check whether R is an equivalence relation
14. a) Define a Partial ordering on a set
b) Let $R=\{(\mathrm{a}, \mathrm{b}),(\mathrm{a}, \mathrm{d}),(\mathrm{b}, \mathrm{b}),(\mathrm{b}, \mathrm{d}),(\mathrm{c}, \mathrm{a}),(\mathrm{c}, \mathrm{b}),(\mathrm{d}, \mathrm{b})\}$ be a relation on $\{\mathrm{a}, \mathrm{b}, \mathrm{c}, \mathrm{d}\}$. Draw the directed graph associated with R and using this check whether the relation is reflexive, symmetric and antisymmetric?

MODULE III

15. Let the function $\mathrm{f}(\mathrm{x})=5 \mathrm{x}+1$ from R to R. Is f an invertible and if it is invertible, then find its inverse?

OR

16. a) Define composition of a function with geometrical interpretation
b) Let $f(x)=x^{2}+2, g(x)=2 x+3, h(x)=x+3$, find $\mathrm{f}_{\mathrm{o}} \mathrm{g}, \mathrm{g}{ }_{\mathrm{o}} \mathrm{h}$ and $\mathrm{h}_{\mathrm{o}} \mathrm{f}$?

MODULE IV

17. a) Find $f^{\prime}\left(\frac{\pi}{2}\right)$ if $f(x)=\sqrt{1+\cos x}$
b) Find the derivative of $y=\left(x^{2}+1\right)\left(x^{3}+3\right)$

OR
18. a) Find $y^{\prime \prime}$ if $y=\sec x$.
b) Find $y^{\prime}(1) \& y^{\prime}(2)$, if $y(x)=\left(x+\frac{1}{x}\right)^{2}$.

MODULE V

19. a) Evaluate $\int\left(3 t^{2}+\frac{t}{2}\right) d t$.
b) Find the area of the region enclosed by the parabola $y=2-x^{2}$ and the line $x+y=0$.

OR

20. a) Find the area of the region between the x -axis and the graph of $\mathrm{f}(\mathrm{x})=x^{3}$ -$x^{2}-2 x,-1 \leq \mathrm{x} \leq 2$.
b) Evaluate $\int_{1}^{4}\left(\frac{3}{2} \sqrt{x}-\frac{4}{x^{2}}\right) d x$.
