SAINTGITS COLLEGE OF ENGINEERING KOTTAYAM, KERALA
 (AN AUTONOMOUS COLLEGE AFFILIATED TO APJ ABDUL KALAM TECHNOLOGICAL UNIVERSITY, THIRUVANANTHAPURAM) FIRST SEMESTER B.TECH DEGREE EXAMINATION (R), FEBRUARY 2022

Course Code: 20EST100

Course Name: ENGINEERING MECHANICS

Max. Marks: 100 Duration: 3 Hours

PART A

(Answer all questions. Each question carries 3 marks)

1. With the help of sketches, explain how forces involved in the lifting of a load by a wedge are analysed.
2. Distinguish between free vibration and forced vibration.
3. Distinguish between angle of friction and angle of repose.
4. The motion of a particle moving in a straight line is given by $\mathrm{t}^{3}-3 \mathrm{t}^{2}+7 \mathrm{t}-2=0$. Determine the acceleration of the particle after 4 seconds.
5. Explain composition and resolution of forces with examples.
6. State the theorems of Pappus Guldinus and explain their significance.
7. A body of weight 5 kN is kept on the floor of an elevator which is moving downward with an acceleration of $2 \mathrm{~m} / \mathrm{s}^{2}$. Determine the reaction exerted by the floor on the body.
8. Discuss the importance of centroid and moment of inertia in the field of engineering.
9. Two springs of stiffnesses $10 \mathrm{kN} / \mathrm{m}$ and $20 \mathrm{kN} / \mathrm{m}$ respectively are connected in series. Determine the equivalent spring stiffness.
10. Two forces of 200 N and 300 N are acting simultaneously at a point. Determine the resultant of the forces if the angle between them is 60°.

203A1

PART B

(Answer one full question from each module, each question carries 14 marks) MODULE I

11. Two smooth spheres each of radius 75 mm and weight 150 N rest in a horizontal channel having vertical walls as shown in figure. The distance between the vertical walls is 300 mm . Determine the reactions at contact points.
A

D

OR

12. The forces $10 \mathrm{~N}, 20 \mathrm{~N}, 30 \mathrm{~N}, 40 \mathrm{~N}$ and 50 N are acting at one of the angular points of a regular hexagon towards the other five angular points taken in order. Find the magnitude and direction of the resultant.

MODULE II

13. a) A simply supported beam is subjected to loads as shown in figure. Determine the reactions at the supports.

b) State the laws of friction.

203A1

14. Two blocks A and B of weights 5 kN and 2.5 kN respectively are connected by a wire passing over a smooth pulley as shown in figure. Determine the magnitude of force P required to prevent movement of block A down the plane. Take coefficient of friction between blocks and both surfaces as 0.25 .

MODULE III
15. Determine the moment of inertia of the figure about its centroidal axes

OR

16. a) Determine the centroid of the shaded area of the figure shown below
y

b) A force of magnitude 300 N has a line of action passing through AB . The coordinates of A and B are $(3,4,8)$ and $(6,8,8)$ respectively. Determine the force vector and the angles of its components with the coordinate axes.

203A1

MODULE IV

17. Determine the acceleration of the blocks assuming the pulleys to be smooth and frictionless. Take coefficient of friction at contact surface as 0.2.

OR
18. a) A bullet is fired upwards at an angle of 30° to the horizontal from a point P on a hill, and it strikes a target which is 80 m lower than P . The initial velocity of bullet is $150 \mathrm{~m} / \mathrm{s}$. Calculate the actual velocity with which the bullet will strike the target
b) A stone dropped into a well is heard to strike the water in 6 seconds. Find the depth of the well assuming velocity of sound to be $335 \mathrm{~m} / \mathrm{s}$.

MODULE V

19. a) A wheel is rotating about its axis with constant acceleration of $1 \mathrm{rad} / \mathrm{s}^{2}$. If the initial and final velocities are 10 rpm and 100 rpm respectively. Determine the time taken and number of revolutions made during this period.
b) The amplitude of a particle in SHM is 0.75 m and the period is 1.2 seconds. Determine the maximum velocity and maximum acceleration. Also determine the displacement, velocity and acceleration after 0.5 seconds.

OR

20. a) A pulley of weight 500 N has radius of 0.75 m . A block of weight 400 N is supported by an inextensible wire wound around the pulley. Determine the velocity of the block 2 seconds after it is released from rest. Assume the motion is under constant acceleration.
b) A weight of 100 N suspended from a spring vibrates with an amplitude of 9 cm and a frequency of 2 oscillation per second. Find a) the stiffness of the spring b) maximum tension induced in the spring and c) maximum velocity of the mass.
