SAINTGITS COLLEGE OF ENGINEERING (AUTONOMOUS)(AFFILIATED TO APJ ABDUL KALAM TECHNOLOGICAL UNIVERSITY, THIRUVANANTHAPURAM)
SECOND SEMESTER INTEGRATED MCA DEGREE EXAMINATION (Special), AUGUST 2021
Course Code: 20IMCAT104
Course Name: INTRODUCTION TO DISCRETE MATHEMATICS
Max. Marks: 60

Duration: 3 Hours

PART A
(Answer all questions. Each question carries 3 marks)
CO

1. Describe the Logical operators Disjunction and Conjunction with truth table. [1]
2. Check whether the following argument is valid or not $[p \rightarrow q, q] \rightarrow p$ [1]
3. Describe the principle of mathematical induction [2]
4. Show that among a group of 85 students 8 or more students born in the same month [2]
5. Find the Gcd and Lcm of $2^{2} 3^{3} 5^{5}$ and $2^{5} 3^{3} 5^{2}$ [3]
6. Find the inverse of 3 under addition modulo 7. [3]
7. Explain isomorphism of two graphs. Give example. [4]
8. Explain Euler graph and state the necessary and sufficient condition for Euler graph [4]
9. Describe Tree traversal and what are the types of tree traversal [5]
10. Define m-ary tree, binary tree and full m-ary tree [5]
PART B
(Answer one full question from each module, each question carries 6 marks)
MODULE I
CO [1] (6)
OR
CO Marks
11. Show that the hypothesis "If it does not rain or it is not foggy then the sailing race will be held and the life saving demonstration will go on". "If the sailing race is held then the trophy will be awarded". "The trophy was not awarded". [1] (6) Imply the conclusion "It rained"

MODULE II

13. Use mathematical induction to show that $H_{2}{ }^{\mathrm{n}} \geq 1+\frac{n}{2}$ whenever n is a nonnegative integer

OR

CO
[2]
Marks
(6)

Marks

(6)

OR

16. State Chinese Remainder Theorem. Solve the following linear congruences

$$
\begin{align*}
& x \equiv 2(\bmod 3) \\
& x \equiv 1(\bmod 4) \tag{3}\\
& x \equiv 3(\bmod 5)
\end{align*}
$$

CO

Marks

MODULE IV

17. Define even and odd vertex of a graph. Show that the number of odd vertices in a graph is even

OR

18. Find the length of the shortest path between a and z from the following graph

[4]
(6)

MODULE V
CO
Marks

CO
Marks
19. Find the preorder , inorder and postorder transversal of the following tree

[5]
(6)
20. Use Prim's algorithm to find a minimum spanning tree of the graph shown below

(6)

