Register No.: Name:

SAINTGITS COLLEGE OF ENGINEERING (AUTONOMOUS)

(AFFILIATED TO APJ ABDUL KALAM TECHNOLOGICAL UNIVERSITY, THIRUVANANTHAPURAM) SECOND SEMESTER INTEGRATED MCA DEGREE EXAMINATION (Special), AUGUST 2021

Course Code:	20IMCAT106	
Course Name:	INTRODUCTION TO DIGITAL SYSTEMS & LOGIC DE	ESIGNS
Max. Marks:	60	Duration: 3 Hours

PART A (Answer all questions. Each question carries 3 marks)

		CO
1.	Write short note on 1's and 2's Compliment form with examples.	[1]
2.	Covert 101111 and 1001011 to decimal.	[1]
3.	Realize the XOR function using NAR/NOR Logic.	[2]
4.	State and prove distributive laws in Boolean Algebra.	[2]
5.	Differentiate latches and flip flops.	[3]
6.	Describe T-flip flop.	[3]
7.	With a neat diagram illustrate 4x1 multiplexer.	[4]
8.	Illustrate the truth table and logic diagram of a half adder.	[5]
9.	Summarize on asynchronous counters.	[6]
10.	Outline any three applications of shift registers.	[6]

PART B

(Answer one full question from each module, each question carries 6 marks)

MODULE I

11.		СО	Marks
	Summarize on Hexadecimal Number system with example.	[1]	(6)
	OR		
12.	Represent (115)10 in 1's complement and 2's complement form.	CO [1]	Marks (6)
	MODULE II		
13.	Prove the universal properties of NAND gate.	CO [4]	Marks (6)
		L J	

С

273A2

Total Pages: 2

	OR				
		СО	Marks		
14.	State and prove De Morgan's theorem. With suitable examples	[2]	(6)		
	MODULE III				
		СО	Marks		
15.	Reduce the expression $\sum m(0,2,3,4,5,6)$ using k-map.	[3]	(6)		
	OR				
		CO	Marks		
16.	With truth table and logic diagram, explain the working of SR-flip flop.	[5]	(6)		
MODULE IV					
		СО	Marks		
17.	Explain full-subtractor.	[5]	(6)		
OR					
		CO	Marks		
18.	Illustrate the design of decimal to BCD encoder.	[5]	(6)		
	MODULE V				
		CO	Marks		
19	Explain a 3-bit binary synchronous counter with logic circuit diagram.	[6]	(6)		
	OR				
		СО	Marks		
20.	Design a Parallel-In/Serial-Out register with D-flip-flops.	[6]	(6)		