SAINTGITS COLLEGE OF ENGINEERING (AUTONOMOUS)
 (AFFILIATED TO APJ ABDUL KALAM TECHNOLOGICAL UNIVERSITY, THIRUVANANTHAPURAM)

SECOND SEMESTER B.TECH DEGREE EXAMINATION (Special), AUGUST 2021

Course Code: 20MAT102

Course Name: Vector Calculus, Differential Equations and Transforms
Max. Marks: 100
Duration: 3 Hours

PART A
 (Answer all questions. Each question carries 3 marks)

1. Let $f(x, y)=x^{2} e^{y}$ Find the maximum value of a directional derivative at $(-2,0)$ and the unit vector in the direction in which maximum value occurs.
2. If $\vec{r}=x i+y j+z k$ and $|\vec{r}|=r$, then prove that the divergence of the vector field $F=\frac{c}{r^{3}} \vec{r}$ is zero.
3. Evaluate $\oint_{C} \cos x \sin y d x+\sin x \cos y d y$ where C is a triangle with vertices $(0,3),(3,3)$ and $(0,3)$ using Green's theorem.
4. Calculate the surface integral $\iint_{\sigma} x z d s$ where σ is the part of the plane $x+y+z=1$ that lies in the first octant.
5. Find a basis of the solution of the ODE $\left(x^{2}-x\right) y^{\prime \prime}-x y^{\prime \prime}+y=0$ if $y_{1}(x)=x$ is one of the solution of given ODE.
6. Solve the Euler Cauchy equation $x^{2} y^{\prime \prime}-5 x y^{\prime}+9 y=0$.
7. Find the Laplace transform of $f(t)$ where $f(t)=\cos (a t+b)$
8. Find the inverse Laplace transform of $\frac{s e^{-2 s}}{s^{2}-1}$
9. Find the Fourier transform of $f(x)= \begin{cases}1 & |x| \leq 1 \\ 0 & |x|>1\end{cases}$
10. Find the Fourier cosine transform of $f(x)=\left\{\begin{array}{cc}k & 0<x<a \\ 0 & x>a\end{array}\right.$

PART B
 (Answer one full question from each module, each question carries 14 marks)
 MODULE I

CO Marks

11. a) Prove that the line integral $\int_{C} y \sin x d x-\cos x d y$ is independent of path and hence evaluate it from $(0,1)$ to $(\pi,-1)$.
b) Find curl (curl F) and $\operatorname{Div}(\operatorname{curl} F)$ where $\vec{F}=x^{2} y i-2 x z j+2 y z k$

OR

12. a) Find the work done by the force $F=x y i+y z j+z x k$ on a particle that moves along the curve $r(t)=t i+t^{2} j+t^{3} k, 0 \leq t \leq 1$.
b) Check whether $\bar{F}=2 x y^{3} i+\left(1+3 x^{2} y^{2}\right) j$ is a conservative field on the entire XY plane. If so find the potential function for it.

MODULE II

CO Marks

13. a) Use divergence theorem find the outward flux of the vector field $F=2 x i+3 y j+z^{2} k$ across the surface of the region that is enclosed by the circular cylinder $x^{2}+y^{2}=9$ and the planes $z=0$ and $z=2$.
b) Using Greens theorem find the work done by the force
$F=\left(e^{2 x}-y^{3}\right) i+\left(\sin y+x^{3}\right) j$ on a particle that moves once around a circle $x^{2}+y^{2}=1$ in counter clock wise direction.

OR

CO Marks

14. a) Use Stokes theorem to evaluate $\oint_{C} f . d r$ where $f=2 z i++3 x j+5 y k, \sigma$ is the portion of the paraboloid $z=4-x^{2}-y^{2}$ for which $z \geq 0$.
b) Find the flux of the vector field $f=(x+y) i+(y+z) j+(x+z) k$ over the surface $\sigma: x+y+z=2$ in the first octant oriented upwards.

MODULE III

CO Marks

15. a) Solve $\frac{d^{2} y}{d x^{2}}+y=\csc x$ by the method of variation of parameters.
b) Solve $y^{\prime \prime}-y=e^{x} \sin 2 x$ by the method of undetermined coefficients.

OR

CO Marks

[3] (7)

CO Marks

b) Evaluate the following

> (i) $L\left\{\int_{0}^{t} \frac{e^{t} \sin t}{t} d t\right\}$
> (ii) $L\left\{t^{3} e^{-3 t}\right\}$

OR

CO Marks

18. a) Using convolution theorem find the inverse Laplace transform of the function $F(s)=\frac{s}{(s-1)\left(s^{2}+4\right)}$
b) Evaluate the following
(i) $L\left\{\frac{\sin ^{2} t}{t}\right\}$
[4]
(ii) $\quad L^{-1}\left\{\frac{4 s+12}{s^{2}+8 s+16}\right\}$

MODULE V

CO Marks

19. a) Compute the Fourier transform of the function $f(x)=e^{-x^{2}}$
[5]

OR

CO Marks

20. a) Obtain the Fourier cosine transform of $f(x)=\frac{e^{-a x}}{x}$
b) Find the Fourier integral representation of $f(x)=\left\{\begin{array}{ll}1 & |x| \leq 1 \\ 0 & |x|>1\end{array}\right.$. Hence evaluate the integral $\int_{0}^{\infty} \frac{\sin \omega}{\omega} d \omega$.
