Page 1 of 3

Register No.: Name:

SAINTGITS COLLEGE OF ENGINEERING (AUTONOMOUS)

(AFFILIATED TO APJ ABDUL KALAM TECHNOLOGICAL UNIVERSITY, THIRUVANANTHAPURAM) SECOND SEMESTER B.TECH DEGREE EXAMINATION (Special), AUGUST 2021

Course Code: 20MAT102

Course Name: Vector Calculus, Differential Equations and Transforms

Max. Marks: 100

PART A

(Answer all questions. Each question carries 3 marks)

Let $f(x, y) = x^2 e^y$ Find the maximum value of a directional derivative at (-2,0) and the 1. [1] unit vector in the direction in which maximum value occurs. If $\vec{r} = xi + yj + zk$ and $|\vec{r}| = r$, then prove that the divergence of the vector field $F = \frac{c}{r^3} \vec{r}$ 2. [1] is zero. Evaluate $\oint_C \cos x \sin y dx + \sin x \cos y dy$ where C is a triangle with vertices (0,3), (3,3) and 3. [2] (0,3) using Green's theorem. Calculate the surface integral $\iint_{-} xzds$ where σ is the part of the plane x + y + z = 1 that 4. [2] lies in the first octant. Find a basis of the solution of the ODE $(x^2 - x)y'' - xy'' + y = 0$ if $y_1(x) = x$ is one of the 5. [3] solution of given ODE. Solve the Euler Cauchy equation $x^2y'' - 5xy' + 9y = 0$. 6. [3] Find the Laplace transform of f(t) where $f(t) = \cos(at + b)$ 7. [4]

8. Find the inverse Laplace transform of $\frac{se^{-2s}}{s^2 - 1}$ [4]

- 9. Find the Fourier transform of $f(x) = \begin{cases} 1 & |x| \le 1 \\ 0 & |x| > 1 \end{cases}$ [5]
- 10. Find the Fourier cosine transform of $f(x) = \begin{cases} k & 0 < x < a \\ 0 & x > a \end{cases}$ [5]

Duration: 3 Hours

CO

201A1

Α

PART B

(Answer one full question from each module, each question carries 14 marks)

MODULE I

			CO	Marks
11.	a)	Prove that the line integral $\int_C y \sin x dx - \cos x dy$ is independent of path	[1]	(7)
		and hence evaluate it from (0,1) to $(\pi,-1)$.		
	b)	Find curl (curl F) and Div (curl F) where $\vec{F} = x^2 yi - 2xzj + 2yzk$	[1]	(7)

OR

			CO	Marks
12.	a)	Find the work done by the force $F = xyi + yzj + zxk$ on a particle that moves along the curve $r(t) = ti + t^2 j + t^3 k$, $0 \le t \le 1$.	[1]	(7)
	b)	Check whether $\overline{F} = 2xy^3i + (1 + 3x^2y^2)j$ is a conservative field on the entire XY plane. If so find the potential function for it.	[1]	(7)
		MODULE II		

			СО	Marks
13.	a)			
		$F = 2xi + 3yj + z^2k$ across the surface of the region that is enclosed by the	[2]	(7)
		circular cylinder $x^2 + y^2 = 9$ and the planes $z = 0$ and $z = 2$.		
	b)	Using Greens theorem find the work done by the force		
		$F = (e^{2x} - y^3)i + (\sin y + x^3)j$ on a particle that moves once around a	[2]	(7)

circle $x^2 + y^2 = 1$ in counter clock wise direction.

OR

			CO	Marks
14.	a)	Use Stokes theorem to evaluate $\oint f dr$ where $f = 2zi + 3xj + 5yk$, σ is		
		C	[2]	(7)
		the portion of the paraboloid $z = 4 - x^2 - y^2$ for which $z \ge 0$.		
	b)	Find the flux of the vector field $f = (x + y)i + (y + z)j + (x + z)k$ over the	[0]	

surface $\sigma: x + y + z = 2$ in the first octant oriented upwards. [2] (7)

MODULE III

			CO	Marks
15.	a)	Solve $\frac{d^2y}{dx^2} + y = \csc x$ by the method of variation of parameters.	[3]	(7)
	b)	Solve $y'' - y = e^x \sin 2x$ by the method of undetermined coefficients.	[3]	(7)

201A1

Total Pages: 3

OR

			СО	Marks
16.	a)	Solve the non-homogeneous ODE $y'' - 5y' - 6y = e^{3x} + \sin x$	[3]	(7)
	b)	Solve the homogeneous ODE $\frac{d^4y}{dx^4} + 4y = 0$	[3]	(7)
		MODULE IV		
			со	Marks
17.	a)	Solve the differential equation $y'' - 4y' + 3y = e^{-t}$, $y(0) = y'(0) = 1$ using Laplace transform.	[4]	(7)
	b)	Evaluate the following		
		(i) $L\left\{\int_{0}^{t} \frac{e^{t} \sin t}{t} dt\right\}$	[4]	(7)
		(ii) $L\{t^3e^{-3t}\}$		
		OR		
			СО	Marks
18.	a)	Using convolution theorem find the inverse Laplace transform of the		

function
$$F(s) = \frac{s}{(s-1)(s^2+4)}$$
 [4] (7)

b) Evaluate the following

Α

(i)
$$L\left\{\frac{\sin^2 t}{t}\right\}$$
 [4] (7)
(ii) $L^{-1}\left\{\frac{4s+12}{s^2+8s+16}\right\}$

MODULE V

			CO	Marks
19.	a)	Compute the Fourier transform of the function $f(x) = e^{-x^2}$	[5]	(7)
	b)	Obtain the Fourier sine transform of $f(x) = \frac{1}{x}$	[5]	(7)

OR

CO Marks

20. a) Obtain the Fourier cosine transform of
$$f(x) = \frac{e^{-ax}}{x}$$
 [5] (7)

b) Find the Fourier integral representation of
$$f(x) = \begin{cases} 1 & |x| \le 1 \\ 0 & |x| > 1 \end{cases}$$
. Hence
[5] (7)

evaluate the integral $\int_{0}^{\infty} \frac{\sin \omega}{\omega} d\omega$.