SAINTGITS COLLEGE OF ENGINEERING (AUTONOMOUS)
 (AFFILIATED TO APJ ABDUL KALAM TECHNOLOGICAL UNIVERSITY, THIRUVANANTHAPURAM)

 SECOND SEMESTER B.TECH DEGREE EXAMINATION (Special), AUGUST 2021

 SECOND SEMESTER B.TECH DEGREE EXAMINATION (Special), AUGUST 2021
 Course Code: 20PHT100
 Course Name: Engineering Physics A
 Max. Marks: 100
 Duration: 3 Hours

PART A
 (Answer all questions. Each question carries 3 marks)

CO

1. Derive differential equation for a forced harmonic oscillation.
2. State three laws of vibration in a stretched string.
3. Why Newton's Rings are circular? What will happen to the diameter if we insert a
liquid between plano convex lens and plane glass plate?
4. A parallel beam of light is made incident on a plane transmission diffraction grating of 15000 lines per inch and angle of second order diffraction is found to be 45°. Calculate the wavelength of light used.
5. State Uncertainty Principle. Write three uncertainty relations.
6. Write a short note on surface to volume ratio in nanomaterials.
7. Derive the relation connecting magnetic susceptibility and relative permeability.
8. State Gauss's divergence theorem and Stoke's theorem. Write corresponding equations.
9. What are Cooper pairs? Explain how do they form?
10. Distinguish between critical angle and acceptance angle of an optical fibre.

PART B
 (Answer one full question from each module, each question carries 14 marks)
 MODULE I

| 11. a)Set up a differential equation for a damped oscillation and deduce its
 solution. Discuss three cases with graphs. | CO | Marks |
| :--- | :--- | :--- | :---: |
| b)Find the natural frequency of a circuit containing inductance of 144

 be maximum? a capacity of $0.0025 \mu \mathrm{~F}$. To which wavelength its response will | [1] (10) | (4) |

OR

MODULE II

Abstract

13. a) Considering thin film interference obtain expressions for conditions of brightness and darkness in thin film. [2] b) A parallel beam of light $6058 \AA$ is incident on a glass plate of refractive index 1.5 such that the angle of refraction in the plate is 30°. Calculate the smallest thickness of the plate which will appear dark by reflection.

OR

14. a) Explain the action of plane transmission grating. What is grating element? Deduce the grating equation in terms of grating element.
b) Distinguish between Interference and Diffraction.

MODULE III

15. a) Using time independent Schrödinger wave equation develop an expression for energy eigen values and normalized wave function for a particle in one dimensional potential well.
b) An electron is bound by a potential box of infinite height having width of $2.5 \AA$. Calculate the lowest three permissible energies (in eV) that the electron can have.

OR

16. a) Explain quantum confinement in nanomaterial. Compare quantum sheets, quantum wire, and quantum dot.
b) Write brief note on the mechanical and electrical properties of nanomaterial.

MODULE IV

17. a) Distinguish between diamagnetic, paramagnetic and ferromagnetic materials.

Marks
b) Prove Ampere's Circuital law.
[4]

OR

18. a) Starting from Maxwell's equation prove that light is an
electromagnetic wave.
b) Differentiate between conduction current and displacement current

CO Marks
[4]
[4]

MODULE V

19. a) What is superconductivity? Explain type I and type II superconductor with the help of graph.

CO
Marks
[5]
b) Show that superconductors are perfect diamagnets.
[5]
(4)

OR

20. a) Define Numerical Aperture of an optical fiber. Derive the expression for Numerical Aperture of a step index fiber? How it is related to acceptance angle of the fiber?

CO Marks
[5]
(10)
b) Briefly explain phase modulated sensor.
[5]
(4)

