B 255A2 Total Pages:3

Register No.:	Name:	
IXCEISICI INU	 manic.	

SAINTGITS COLLEGE OF ENGINEERING (AUTONOMOUS)

(AFFILIATED TO APJ ABDUL KALAM TECHNOLOGICAL UNIVERSITY, THIRUVANANTHAPURAM) SECOND SEMESTER B. TECH DEGREE EXAMINATION (Special), AUGUST 2021

Course Code: 20CYT100

Course Name: Engineering Chemistry

Max. Marks: 100 Duration: 3 Hours

PART A

(Answer all questions. Each question carries 3 marks)

		CO
1.	Draw a neat labelled diagram of calomel electrode and write its electrode	[1]
	representation.	[-]
2.	What is cell constant? The specific conductivity of 0.3N KCl solution at 27°C is	
	0.0002765 ohm ⁻¹ cm ⁻¹ . If the resistance of the cell containing this solution is 500 ohm,	[1]
	calculate the cell constant.	
3.	Which of the following molecules can give IR absorption? Give reason.	[2]
	a) HCl b) O_2 c) HBr d) N_2	
4.	Predict the number of proton NMR signals for the following componds	
	a) H_2 b) CH_4 c) C_6H_6	[2]
5.	Mention any three visualization techniques used in TLC.	[3]
6.	How nanomaterials are classified based on their dimension?	[3]
7.	What are the rules for assigning R & S notation?	[4]
8.	What is Kevlar? Write its any two applications.	[4]
9.	What is reverse osmosis?	[5]
10.	A sample of water contains 162mg/L of Ca(HCO ₃) ₂ , 68 mg/L of CaSO ₄ and 95	r=3
	mg/L of MgCl ₂ . Find carbonate and non-carbonate hardness of the water sample.	[5]

PART B

(Answer one full question from each module, each question carries 14 marks)

MODULE I

11. a) Derive Nernst equation for single electrode potential. Write the

Nernst equation for Daniel cell. Calculate the equilibrium constant [1] (10)

of Daniel cell reaction, given that E⁰cell=1.1V.

В		255A2		Total Pages:3	
	b)	Write the charging and discharging reactions of Li-ion cell.	[1]	(4)	
OR					
			СО	Marks	
12.	a)	What is electroless plating? How electroless plating of copper and nickel are carried out?	[1]	(10)	
	b)	Write the cell reactions and cell representation of Cu-Ag cell. Given that E^0 Ag ⁺ /Ag=+0.80V and E^0 Cu ²⁺ /Cu=+0.34 V. Calculate the emf of the cell at 25°C when [Ag ⁺] =0.1M and [Cu ²⁺] =0.1M	[1]	(4)	
MODULE II					
			CO	Marks	
13.	a)	Explain the various electronic transitions possible in a molecule. List all the electronic transitions possible in CH ₄ and HCHO.	[2]	(10)	
	b)	The CO molecule absorbs IR frequency of 2140 cm ⁻¹ . Calculate the force constant of the chemical bond. Given that atomic masses of C=12 amu and O=16 amu. (1 amu = 1.67×10^{-27} kg)	[2]	(4)	
		OR			
			CO	Marks	
14.	a)	What is chemical shift? What are the factors that affect chemical shift? Predict the number of signals and splitting pattern of ¹ H NMR spectrum of CH ₃ -CH ₂ -O-CH ₂ -CH ₃ .	[2]	(10)	
	b)	A solution shows a transmittance of 30% when taken in a cell of 4 cm thickness. Calculate the concentration of the solution if the molar absorption coefficient is 3000 Lmol ⁻¹ cm ⁻¹ .	[2]	(4)	
		MODULE III			
			СО	Marks	
15.	a)	Compare the principle and instrumentation of TGA and DTA.	[3]	(10)	
	b)	Define the terms a) retention time b) retention factor.	[3]	(4)	
		OR			
			СО	Marks	
16.	a)	Describe the principle, instrumentation and applications of chromatographic technique for the separation of non-volatile components in a mixture.	[3]	(10)	
	b)	Discuss any one method for the preparation of nanomaterials.	[3]	(4)	
MODULE IV					

MODULE IV

			со	Marks			
17.	a)	What is conformational analysis? Draw cis and trans isomers of					
		1,2-dimethyl cyclohexane. Which conformer is more stable in each	[4]	(10)			
		case?					
	b)	What is OLED? Write its two advantages.	[4]	(4)			
	OR						
			СО	Marks			
18.	a)	What are conducting polymers? Write the preparation, any two		(10)			
		properties and applications of polyaniline.	[4]	(10)			
	b)	Define with example	[4]	(4)			
		a) keto-enol tautomerism b) enantiomers	[4]	(4)			
		MODULE V					
			CO	Marks			
19.	a)	Discuss the theory and procedure of EDTA method for estimation of hardness of water.	[6]	(10)			
			[5]	(10)			
	b)	50 ml of a water sample requires 22 ml of an EDTA solution for					
		the titration. 20 ml of the same EDTA solution was required for	[5]	(4)			
		the titration of 50 ml of standard hard water containing 1gm of	[5]	(4)			
		CaCO ₃ per litre. Calculate the hardness of water sample in ppm.					
		OR					
			CO	Marks			
20.	a)	Briefly discuss the steps involved in sewage treatment. Describe	[5]	(10)			
		UASB process.	[5]	(10)			
	b)	Explain break point chlorination with a neat labelled sketch.	[5]	(4)			
