SAINTGITS COLLEGE OF ENGINEERING (AUTONOMOUS)
 (AFFILIATED TO APJ ABDUL KALAM TECHNOLOGICAL UNIVERSITY, THIRUVANANTHAPURAM)

SECOND SEMESTER B.TECH DEGREE EXAMINATION (Special), AUGUST 2021

Course Code:
20EST130
Course Name: Basics of Electrical and Electronics Engineering
Max. Marks: 100

Duration: 3 Hours

PART I BASIC ELECTRICAL ENGINEERING
 Part Ito be answered in pages 1 to 15
 PART A
 (Answer all questions. Each question carries 4 marks)

1. A 50Ω resistor is in parallel with a 100Ω resistor. Current in 100Ω is 3.6 A . What is the value of third resistance to be added in parallel to this circuit to make the total current 12.1 A?
2. State and explain Faraday's Laws of electromagnetic induction.
3. Define the terms (i) Peak factor and (ii) Form factor for a fully rectified sine wave.
4. Derive the relation between line current and phase current in a three-phase star connected system.
5. A 100Ω resistor in series with $150 \mu \mathrm{~F}$ capacitor is connected to $230 \mathrm{~V}, 50 \mathrm{~Hz}$ supply. Find i) impedance ii) current iii) power factor iv) voltage across the resistor

PART B
 (Answer one full question from each module, each question carries 10 marks)

MODULE I

CO
Marks
6. a) State and explain Kirchoff's laws with examples.
b) Determine the equivalent resistance across the terminals A and B. All resistors are given in ohms.

(6)

OR

7. a) What are the steps to be followed in nodal analysis?

CO Marks
[1]
(3)
b) Calculate the current flowing through 30Ω and 50Ω resistors using mesh analysis for the following circuit.

[1]
(7)
8. a) A mutual inductor with co-efficient of coupling equal to one is made from a primary coil of inductance 10 mH and a secondary coil of 20 mH . Find the value of mutual inductance.
b) Determine the effective and mean value of the given voltage waveform.

[2]

OR
9. A steel ring of 25 cm diameter and of circular section 3 cm in diameter has an air gap of 1.5 mm length. It is uniformly wound with 1000 turns of wire carrying a current of 2 A . Calculate i) magneto motive force ii) magnetic flux density in air gap iii) magnetic flux iv) relative permeability of steel ring. Assume that iron path takes about 40% of the total mmf.

MODULE III

10. a) Prove that the total power consumed by a purely inductive circuit is zero.
b) Determine for a series RLC circuit with $\mathrm{R}=15 \Omega, \mathrm{~L}=2 \mathrm{mH}, \mathrm{C}=1 \mu \mathrm{~F}$:
(i) Impedance (ii) Current (iii) Voltage across L and C (iv) Power delivered to R (v) Power factor. The circuit is connected to a voltage source of voltage $\mathrm{v}=50 \sin 628 \mathrm{t}$.

OR

COMarks
11. Three inductive coils, each with a resistance of 22Ω and an inductance of 0.05 H are connected in (i) star and (ii) delta, to a three phase $415 \mathrm{~V}, 50 \mathrm{~Hz}$ supply. [3]
Calculate for each of the above cases (i) phase current and line current and (ii)
total power absorbed.(10)

PART II BASIC ELECTRONICS ENGINEERING
 Part II to be answered in pages 16 to 30
 PART A
 (Answer all questions. Each question carries 4 marks)

12. For the samples given below, specify the nominal value, tolerance, maximum and minimum value
a) A resistor coloured - yellow, violet, orange and gold
b) A capacitor with code 104 K
13. Differentiate between avalanche breakdown and zener breakdown.
14. Draw the block diagram of DC power supply and specify the functions of each block.
15. Explain voltage divider biasing.
16. Illustrate the concept of frequency reuse in cellular communication.

PART B
 (Answer one full question from each module, each question carries 10 marks)

MODULE IV

17. a) | Explain the specifications and features of carbon composition type resistors |
| :--- |
| and carbon film type resistors. |

b)	CO
With necessary diagrams and waveforms, describe the V-I characteristics of	
a PN junction diode.	

$[4]$

OR

	CO	Marks
20. With circuit diagram and waveforms, explain the working of a common emitter	$[5]$	(10)

MODULE VI

| | CO | Marks | |
| :--- | :--- | :--- | :---: | :---: |
| 21. a) | List about the frequency bands used for various communication systems. | $[6]$ | (4) |
| b) | With the help of block diagram, outline the working of super heterodyne | | |
| receiver. | | | |

OR

$\begin{array}{lll}\text { 22. a) Describe the principle of operation of GSM with block diagram } & \text { [6] } \\ \text { b) } & \text { What is modulation. Differentiate between amplitude modulation and } & \text { [6] } \\ \text { frequency modulation. } & \end{array}$

Marks

