130A1

Α		Total Pages	3
Register No:	 Name:		••••

SAINTGITS COLLEGE OF ENGINEERING KOTTAYAM, KERALA

(AN AUTONOMOUS COLLEGE AFFILIATED TO APJ ABDUL KALAM TECHNOLOGICAL UNIVERSITY, THIRUVANANTHAPURAM)

FIRST SEMESTER M.TECH. DEGREE EXAMINATION (R), MARCH 2021 (TELECOMMUNICATION ENGINEERING)

- Course Code: 20ECTET101
- Course Name: APPLIED LINEAR ALGEBRA
- Max. Marks: 60

Duration: 3 Hours

PART A

(Answer all questions. Each question carries 3 marks)

- 1. Solve for 'a' if the vectors (1,5,6), (0,3,2) and (2,a,10) are linearly dependent.
- 2. Using rank, check the consistency of the system of equations, 2x+z = 3, x-y+z = 1 and 4x-2y+3z = 3.
- 3. Verify that the function T: $R^2 \rightarrow R^3$ defined as $T(x_1, x_2) = (x_1 x_2, x_1 + x_2, x_2)$ is a linear transformation and also find the kernal of T.
- 4. Using Gram-Schmidt orthogonalization, find an orthogonal basis for the span of the vectors $\mathbf{w}_1, \mathbf{w}_2 \in \mathbb{R}^3$ if $\mathbf{w}_1 = (1, 0, 3)^T, \mathbf{w}_2 = (2, -1, 0)^T$.
- 5. Given that $\lambda = 1$ is one eigen value of the matrix $\begin{pmatrix} 0 & 1 & 2 \\ -4 & 1 & 4 \\ -5 & 1 & 7 \end{pmatrix}$. Find the remaining eigen values

without finding the characteristic equation.

- 6. Give an example of a Hermitian matrix and verify that its eigen values are real.
- 7. Briefly state the significance of the concept of singular value decomposition.
- 8. Find the singular values of the matrix $\begin{pmatrix} 3 & 0 \\ 8 & 3 \end{pmatrix}$

130A1

PART B

(Answer one full question from each module, each question carries 6 marks)

MODULE I

9. Let V be the set of all vectors of the form (v_1, v_2, v_3) that satisfy $3v_1-2v_2+v_3 = 0$ and $4v_1+5v_2 = 0$. (6) Find the dimension and basis for V.

OR

10. Does the vector (5, 13, 32) belong to the span of the vectors (2, 3, 2), (-3, 1, 19) and (6) (7, -3, -47)? Verify.

MODULE II

(6)

(6)

11. Find a least square solution of the system 4a = 2, 2b = 0, a+b = 11

OR

		/-1	3	2\	
12.	Find the basis of the null space of the matrix	1	1	0	
		\3	3	0/	

MODULE III

13. Use Rank-Nullity theorem to find the rank of the linear transformation defined from (6) $R^4 \rightarrow R^3$ defined as T(a, b, c, d) = (a + 2b + 3c - d, 3a + 5b + 8c - 2d, a + b + 2c)

OR

14. Verify rank-nullity theorem for the linear transformation defined from $R^3 \rightarrow R^3$ defined as (6) T(a,b,c) = (a - b + 2c, 2a + b, -a - 2b + 2c)

MODULE IV

15. Find the orthogonal decomposition of v=[4 -2 3], with respect to (6)

 $W = span \{ [1 2 1], [1 - 1 1] \}$

OR

16. Find an orthonormal basis for \mathbb{R}^3 containing the vector $\mathbf{v}_1 = (2/3, 2/3, 1/3)^T$ (6)

MODULE V

17. Diagonalise the matrix
$$\begin{pmatrix} 3 & 1 & -1 \\ -2 & 1 & 2 \\ 0 & 1 & 2 \end{pmatrix}$$
 (6)

OR

130A1

18. The eigen vectors of a 3x3 matrix A corresponding to the eigen values 1,1,3 are $(1, 0, -1)^{T}$, $(0, 1, -1)^{T}$ and $(1, 1, 0)^{T}$. Find the matrix A. (6)

MODULE VI

19. Construct a singular value decomposition of the matrix $\begin{pmatrix} 2 & -1 \\ 2 & 2 \end{pmatrix}$ (6)

OR

20. Find the pseudo inverse of the matrix $\begin{pmatrix} 2 & -1 & 0 \\ 4 & 3 & -2 \end{pmatrix}$ using SVD. (6)