# SAINTGITS COLLEGE OF ENGINEERING KOTTAYAM, KERALA 

(AN AUTONOMOUS COLLEGE AFFILIATED TO
SAINTGITS
LEARN.GROW.EXCEL
APJ ABDUL KALAM TECHNOLOGICAL UNIVERSITY, THIRUVANANTHAPURAM)

FIRST SEMESTER M.TECH. DEGREE EXAMINATION (R), MARCH 2021
(TELECOMMUNICATION ENGINEERING)

Course Code: 20ECTET101

Course Name: APPLIED LINEAR ALGEBRA

Max. Marks: 60
Duration: 3 Hours

PART A

## (Answer all questions. Each question carries 3 marks)

1. Solve for ' $a$ ' if the vectors $(1,5,6),(0,3,2)$ and $(2, a, 10)$ are linearly dependent.
2. Using rank, check the consistency of the system of equations, $2 x+z=3, x-y+z=1$ and $4 x-2 y+3 z=3$.
3. Verify that the function $\mathrm{T}: R^{2} \rightarrow R^{3}$ defined as $T\left(x_{1}, x_{2}\right)=\left(x_{1}-x_{2}, x_{1}+x_{2}, x_{2}\right)$ is a linear transformation and also find the kernal of T .
4. Using Gram-Schmidt orthogonalization, find an orthogonal basis for the span of the vectors $\mathbf{w}_{1}, \mathbf{w}_{2} \in R^{3}$ if $\mathbf{w}_{1}=(1,0,3)^{\mathrm{T}}, \mathbf{w}_{2}=(2,-1,0)^{\mathrm{T}}$.
5. Given that $\lambda=1$ is one eigen value of the matrix $\left(\begin{array}{ccc}0 & 1 & 2 \\ -4 & 1 & 4 \\ -5 & 1 & 7\end{array}\right)$. Find the remaining eigen values without finding the characteristic equation.
6. Give an example of a Hermitian matrix and verify that its eigen values are real.
7. Briefly state the significance of the concept of singular value decomposition.
8. Find the singular values of the matrix $\left(\begin{array}{ll}3 & 0 \\ 8 & 3\end{array}\right)$

## PART B

(Answer one full question from each module, each question carries 6 marks)

## MODULE I

9. Let $V$ be the set of all vectors of the form $\left(v_{1}, v_{2}, v_{3}\right)$ that satisfy $3 v_{1}-2 v_{2}+v_{3}=0$ and $4 v_{1}+5 v_{2}=0$. Find the dimension and basis for V .

## OR

10. Does the vector $(5,13,32)$ belong to the span of the vectors $(2,3,2),(-3,1,19)$ and (7, -3, -47) ? Verify.

## MODULE II

11. Find a least square solution of the system $4 a=2,2 b=0, a+b=11$

## OR

12. Find the basis of the null space of the matrix $\left(\begin{array}{ccc}-1 & 3 & 2 \\ 1 & 1 & 0 \\ 3 & 3 & 0\end{array}\right)$

## MODULE III

13. Use Rank-Nullity theorem to find the rank of the linear transformation defined from
$R^{4} \rightarrow R^{3}$ defined as $T(a, b, c, d)=(a+2 b+3 c-d, 3 a+5 b+8 c-2 d, a+b+2 c)$

## OR

14. Verify rank-nullity theorem for the linear transformation defined from $R^{3} \rightarrow R^{3}$ defined as $T(a, b, c)=(a-b+2 c, 2 a+b,-a-2 b+2 c)$

## MODULE IV

15. Find the orthogonal decomposition of $v=\left[\begin{array}{ll}4 & -2\end{array}\right]$, with respect to
$\mathrm{W}=\operatorname{span}\left\{\left[\begin{array}{lll}1 & 2 & 1\end{array}\right],\left[\begin{array}{lll}1 & -1 & 1\end{array}\right]\right\}$

## OR

16. Find an orthonormal basis for $R^{3}$ containing the vector $\mathbf{v}_{1}=(2 / 3,2 / 3,1 / 3)^{T}$

## MODULE V

17. Diagonalise the matrix $\left(\begin{array}{ccc}3 & 1 & -1 \\ -2 & 1 & 2 \\ 0 & 1 & 2\end{array}\right)$
18. The eigen vectors of a $3 x 3$ matrix $A$ corresponding to the eigen values $1,1,3$ are $(1,0,-1)^{\mathrm{T}},(0,1,-1)^{\mathrm{T}}$ and $(1,1,0)^{\mathrm{T}}$. Find the matrix A.

## MODULE VI

19. Construct a singular value decomposition of the matrix $\left(\begin{array}{cc}2 & -1 \\ 2 & 2\end{array}\right)$

## OR

20. Find the pseudo inverse of the matrix $\left(\begin{array}{ccc}2 & -1 & 0 \\ 4 & 3 & -2\end{array}\right)$ using SVD .
