	I	FIRST SEMESTER M.TECH. DEGREE EXAMINATION (R), MARCI (TELECOMMUNICATION ENGINEERING)	H 2021	
Course	Code:	20ECTET107		
Course	Name:	ADVANCED DIGITAL SIGNAL PROCESSING		
Max. M	arks:	60	Duration:	3 Но
		PART A		
		(Answer all questions. Each question carries 3 marks)		
1.	Describ	e fractional sampling rate conversion.		
2.	Implem	ent uniform filter bank using polyphase decomposition.		
3.	What is	Heisenberg's uncertainty principle in time and frequency analysis		
4.	Explain	the orthogonality of Haar scaling function and Haar wavelet functi	on.	
5.	Explain	periodogram averaging		
6.	Describ	e Yule-Walker equations.		
7.	What ar	re the augmented Wiener-Hopf equations for linear prediction filters	\$?	
8.	Illustrat	te the block diagram of adaptive noise canceller.		
		PART B		
	(Ans	wer one full question from each module, each question carries MODULE I	s б marks)	
9.	Describ domain	e basic multirate operations in digital domain with suitable demo	onstration in	time
		OR		
10.	Illustrat	te the aliasing effect in frequency domain caused by down sampling MODULE II	g with examp	le.
11.	Illustra	te the polyphase structure for fractional sampling rate converter.		
		OR		
12.	Illustrat	te two channel quadrature mirror filter banks using polyphase repr MODULE III	esentation.	
13.	Explain	Short Time Fourier Transform with various window functions. OR		
14.	Explain	continuous wavelet transform in detail. MODULE IV		
15.	Describ	e the procedure of multi resolution analysis with necessary diagram	ns.	
		Page 1 of 2		

D **Register No:** Name:

SAINTGITS COLLEGE OF ENGINEERING KOTTAYAM, KERALA

(AN AUTONOMOUS COLLEGE AFFILIATED TO TS OWEXCEL APJ ABDUL KALAM TECHNOLOGICAL UNIVERSITY, THIRUVANANTHAPURAM)

ours

(6)

(6)

(6)

- (6)
- (6)
- (6) (6)

2

Total Pages

245A3

OR

16. A half sinusoid, defined by,

$$f(x) = \begin{cases} \sin \pi x & 0 \le x < 1 \\ 0 & \text{otherwise} \end{cases}$$

is to be approximated by Haar scaling functions in function space V_0 and refined by Haar wavelet functions in space W_0 and W_1 . Determine the scaling and wavelet functions and their associated coefficients.

MODULE V

17. Explain the development of Yule-Walker equations for the estimation of AR coefficients for a given zero-mean discrete time series $\{x_i\}_{1}^{N}$ taken as an AR process. (6)

OR

18. Describe the Blackman-Tuckey method of smoothing the periodogram. (6)
MODULE VI
19. Explain Levinson – Durbin algorithm in detail. (6)
OR
20. Explain the steepest – descent algorithm and its application to Wiener filter (6)

(6)