213A2

A
Total Pages

SAINTGITS COLLEGE OF ENGINEERING
 KOTTAYAM, KERALA

(AN AUTONOMOUS COLLEGE AFFILIATED TO
APJ ABDUL KALAM TECHNOLOGICAL UNIVERSITY, THIRUVANANTHAPURAM)
FIRST SEMESTER M.TECH. DEGREE EXAMINATION, MARCH 2021 (ROBOTICS \& AUTOMATION)

Course Code: 20ECRAT101

Course Name: ADVANCED MATHEMATICS AND OPTIMIZATION TECHNIQUES

Max. Marks: 60
Duration: 3 Hours

PART A

(Answer all questions. Each question carries 3 marks)

1. Define basis of a vector space with example.
2. Find the matrix representation with respect to the standard basis in R^{2} and the basis $D=\left\{t^{2}+t\right.$, $t+1, t-1$ for the linear transformation $T: R^{2} \rightarrow R^{2}$ defined by $T(a, b)=(4 a+b) t^{2}+3 a t+(2 a-b)$
3. Find the projection of vector $\mathrm{V}=(1,-2,3,-4)$ along the vector $\mathrm{w}=(1,2,1,2)$ in the inner product space R^{4} with the standard inner product.
4. Explain the basic assumptions of a linear programming problem
5. Convert the following 0-1 programming problem to standard form Maximize : $z=20 x_{1}+40 x_{2}+20 x_{3}+15 x_{4}+30 x_{5}$ Subject to :

$$
\begin{aligned}
& 5 x_{1}+4 x_{2}+3 x_{3}+7 \mathrm{x}_{4}+8 \mathrm{x}_{5} \leq 25 \\
& x_{1}+7 x_{2}+9 x_{3}+4 \mathrm{x}_{4}+6 \mathrm{x}_{5} \leq 25 \\
& 8 x_{1}+10 x_{2}+2 x_{3}+x_{4}+10 x_{5} \leq 25 \\
& x_{i}=0 \text { or } 1 ; \mathrm{i}=1,2,3,4,5
\end{aligned}
$$

6. Distinguish between integer programming problem and linear programming problem
7. Explain quadratic programming?
8. State Kuhn-Tucker conditions for a nonlinear programming problem having a maximization objective function

PART B
(Answer one full question from each module, each question carries 6 marks)
MODULE I
9. Which of the following subsets of R^{3} are subspaces?
(a) The plane of vectors $\left(b_{1}, b_{2}, b_{3}\right)$ with first component $b_{1}=0$
(b) The vectors $\left(b_{1}, b_{2}, b_{3}\right)$ with $b_{2} b_{3}=0$

213A2

10. Let V be a vector space of 2×2 matrix over R . Let W be a subspace of a symmetric matrix. Find the dimension of W and its basis.

MODULE II

11. Consider the matrix mapping $A: R^{4} \rightarrow R^{3}$ where $A=\left[\begin{array}{cccc}1 & 2 & 3 & 1 \\ 1 & 3 & 5 & -2 \\ 3 & 8 & 13 & -3\end{array}\right]$

Find the basis \& dimension of image of A \& kernel of A.

OR

12. Find transition matrices between the two bases $G=\{t+1, t-1\}$ and
$\mathrm{H}=\{2 \mathrm{t}+1,3 \mathrm{t}+1\}$ for P^{1}. Verify $\mathrm{V}_{\mathrm{G}}=P_{H}^{G} \mathrm{~V}_{\mathrm{H}}$ and $\mathrm{V}_{\mathrm{H}}=P_{G}^{H} \mathrm{~V}_{\mathrm{G}}$ for the co-ordinate representation of the polynomial $(3 t+5)$ with respect to each basis

MODULE III

13. Apply Gram-Schmidth orthogonalization process to the basis
$B=\{(1,1,1,1),(1,2,4,5),(1,-3,-4,-2)\}$ of the inner product space R^{4} to find orthogonal \& orthonormal basis of R^{4}.

OR

14. Explain least square solution of inconsistent system. Obtain the least square solution of
the inconsistent system $A X=B$ where $A=\left[\begin{array}{ll}4 & 0 \\ 0 & 2 \\ 1 & 1\end{array}\right]$ and $B=\left[\begin{array}{c}2 \\ 0 \\ 11\end{array}\right]$

MODULE IV

15. Use Simplex method to solve the following Linear programming problem

Maximize $Z=3 \mathrm{x}_{1}+2 \mathrm{x}_{2}$
Subject to:

$$
\begin{aligned}
& -\mathrm{x}_{1}+2 \mathrm{x}_{2} \leq 4 \\
& 3 \mathrm{x}_{1}+2 \mathrm{x}_{2} \leq 14 \\
& \mathrm{x}_{1}-\mathrm{x}_{2} \leq 3 \\
& \mathrm{x}_{1}, \mathrm{x}_{2}, \mathrm{x}_{3} \geq 0
\end{aligned}
$$

OR

16. Find the optimum solution using Big M method

Minimize $Z=7 \mathrm{x}_{1}+15 \mathrm{x}_{2}+20 \mathrm{x}_{3}$
Subject to:

$$
\begin{aligned}
& 2 x_{1}+4 x_{2}+6 x_{3} \geq 24 \\
& 3 x_{1}+9 x_{2}+6 x_{3} \geq 30 \\
& x_{1}, x_{2}, x_{3} \geq 0
\end{aligned}
$$

MODULE V

17. Find the optimum integer solution for the LPP

Maximize : $z=2 x_{1}+3 x_{2}$
Subject to :

$$
\begin{aligned}
& 2 x_{1}+2 x_{2} \leq 7 \\
& x_{1} \leq 2 \\
& x_{2} \leq 2 \\
& x_{1},, x_{2} \geq 0 \text { and integers }
\end{aligned}
$$

OR

18. Solve the LPP using branch and bound method.
$2 x_{1}+2 x_{2} \leq 7$

Maximize : $z=5 x_{1}+6 x_{2}$
Subject to :

$$
\begin{aligned}
& x_{1}+x_{2} \leq 5 \\
& 4 x_{1}+7 x_{2} \leq 28 \\
& x_{1}, x_{2} \geq 0 \text { and integers }
\end{aligned}
$$

213A2

MODULE VI

19. Solve the following using Kuhn-Tucker conditions

Maximise $z=x_{1}{ }^{2}+x_{1} x_{2}-2 x_{2}{ }^{2}$
Subject to:

$$
\begin{gathered}
4 x_{1}+2 x_{2} \leq 24 \\
5 x_{1}+10 x_{2} \leq 30 \\
\mathrm{x}_{1}, \mathrm{x}_{2} \geq 0
\end{gathered}
$$

OR

20. Solve the following nonlinear programming problem

Minimize $z=2 x_{1}{ }^{2-} 3 x_{2}^{2}+18 x_{2}$
Subject to:

$$
\begin{gathered}
2 \mathrm{x}_{1}+\mathrm{x}_{2}=8 \\
\mathrm{x}_{1}, \mathrm{x}_{2} \geq 0
\end{gathered}
$$

