184A1

A

SAINTGITS COLLEGE OF ENGINEERING KOTTAYAM, KERALA
 (AN AUTONOMOUS COLLEGE AFFILIATED TO
 APJ ABDUL KALAM TECHNOLOGICAL UNIVERSITY, THIRUVANANTHAPURAM)

SAINTGITS
LEARN.GROW.EXCEL

FIRST SEMESTER M.TECH. DEGREE EXAMINATION(R), MARCH 2021

 (POWER SYSTEMS)Course Code: 20EEPST101

Course Name: APPLIED MATHEMATICS

Max. Marks: 60

Duration:
 3 Hours

PART A

(Answer all questions. Each question carries 3 marks)

1. Find the Z-transform of n^{2}.
2. Find the shortest smooth plane curve joining two distinct points in the plane.
3. Solve the integral equation $\int_{0}^{x} \frac{y(t)}{\sqrt{x-t}} d t=\sqrt{x}$ by transform method.
4. Show that the means of samples taken from a normal population are consistent estimate of the population mean.
5. Explain briefly the natural cubic spline approximation.
6. Derive the normal equations for an exponential $y=a e^{b x}$ using least square error estimate.
7. Let V be the vector space of all 2×2 matrices over the field F. Prove that V has dimension 4 by exhibiting a basis for V which has four elements.
8. Let T and U be the linear operators on R^{2} defined by $T\left(x_{1}, x_{2}\right)=\left(x_{2}, x_{1}\right)$ and $U\left(x_{1}, x_{2}\right)=\left(x_{1}, 0\right)$. Find the transformations $U+T, U T, T^{2}$.

PART B
(Answer one full question from each module, each question carries $\mathbf{6}$ marks)
MODULE I
9. State and prove convolution theorem.

OR
10. Solve $y_{n+2}+6 y_{n+1}+9 y_{n}=2^{n}$ with $y_{0}=0, y_{1}=0$ using Z-transforms.

MODULE II

11. Find the extremals of the functional $\int_{x_{1}}^{x_{2}} \frac{\left(1+y^{2}\right)}{y^{\prime 2}} d x$.

OR
12. Determine the shape an absolutely flexible, inextensible homogeneous and heavy rope of given length L suspended at the points A and B.

184A1

MODULE III

13. Show that the integral equation $y(x)=\frac{x^{3}}{6}-x+1+\int_{0}^{x}\left(\sin t-(x-t)\left(\cos t+e^{t}\right)\right) y(t) d t$ is equivalent to the differential equation $y^{\prime \prime}(x)-\sin x y^{\prime}(x)+e^{x} y(x)=x ; y(0)=1, y^{\prime}(0)=-1$.

OR

14. Solve the Fredholm integral equation $y(x)=\sin x+\lambda \int_{0}^{2 \pi} \cos (x+t) y(t) d t$ using successive approximation.

MODULE IV

15. If x_{1}, x_{2} and x_{3} are three independent observations from a population with mean μ and variance σ^{2}. Compare the efficiencies of $t_{1}=x_{1}+x_{2}-x_{3}$ and $t_{2}=2 x_{1}+3 x_{2}-4 x_{3}$.

OR
16. Show that $t_{n}=\frac{n \bar{x}}{n+1}$ is a consistent estimate of λ, where \bar{x} is the mean of samples of size n taken from a poisson population.

MODULE V

17. Fit a straight line to the following data, $y(0)=2.1, y(1)=3.5, y(2)=5.4, y(3)=7.3, y(4)=$ 8.2

OR

18. Determine the constants a, b by the method of least square, such that $y=a e^{b x}$ fits the following values $y(0)=0.10, y(0.5)=0.45, y(1)=2.15, y(1.5)=9.15, y(2)=40.35, y(2.5)=$ 180.75

MODULE VI

19. Let V be the vector space of all 2×2 matrices over the field F. Let W_{1} be the set of matrices of the form $\left[\begin{array}{cc}x & -x \\ y & z\end{array}\right]$ and let W_{2} be the set of matrices of the form $\left[\begin{array}{cc}a & b \\ -a & c\end{array}\right]$
(a) Prove that W_{1} and W_{2} are subspaces of .
(b) Find the dimensions of $W_{1}, W_{2}, W_{1}+W_{2}$ and $W_{1} \cap W_{2}$.

OR

20. Let T be a linear operator on R^{3}, the matrix of which in the standard ordered basis is $A=$ $\left[\begin{array}{ccc}1 & 2 & 1 \\ 0 & 1 & 1 \\ -1 & 3 & 4\end{array}\right]$. Find a basis for the range of T and a basis for the null space of T.
