

Register No:

3

Name:

SAINTGITS COLLEGE OF ENGINEERING KOTTAYAM, KERALA

(AN AUTONOMOUS COLLEGE AFFILIATED TO APJ ABDUL KALAM TECHNOLOGICAL UNIVERSITY, THIRUVANANTHAPURAM)

.....

FIRST SEMESTER M.TECH. DEGREE EXAMINATION(R), MARCH 2021

(MACHINE DESIGN)

Course Code: 20MEMDT101

Course Name: ADVANCED ENGINEERING MATHEMATICS

.....

Max. Marks: 60

Duration: 3 Hours

PART A

(Answer all questions. Each question carries 3 marks)

1. Find the extremals of the function, $\int_{x_0}^{x_1} \frac{y'^2}{x^3} dx$

2. Show that
$$J_{1/2}(x) = \sqrt{\left(\frac{2}{\pi x}\right) \sin x}$$

- 3. What are the possible solutions for heat equation
- 4. Obtain the Rodrigue's formula.

5. Classify the equation
$$x^2 \frac{\partial^2 u}{\partial x^2} + y^2 \frac{\partial^2 u}{\partial y^2} = x \frac{\partial u}{\partial x} - y \frac{\partial u}{\partial y}$$

- 6. Expand the summation convention $\bar{G}_{ij}\overline{dx^i dx^j}$; i = 1 to 3, j = 1 to 3
- 7. Prove that contraction of outer product of tensors A^p and B_a is invariant
- 8. Outline the various steps for ANOVA testing in one way classification.

PART B

(Answer one full question from each module, each question carries 6 marks)

MODULE I

9. Solve the boundary value problem y'' - y + x = 0, $(0 \le x \le 1)$, y(0) = y(1) = 0 by (6) Rayleigh-Ritz method

OR

10. Find the curve passing through the points (x_1, y_1) and (x_2, y_2) which rotates about (6) x axis gives a minimum surface area.

MODULE II

11. (a) Express $J_5(x)$ in terms of $J_0(x)$ and $J_1(x)$

(b) Show that $\frac{d}{dx}(x^n J_n(x)) = x^n J_{n-1}(x)$

OR

(6)

215A3

12. Solve in series, the equation $\frac{d^2y}{dx^2} + xy = 0$

MODULE III

13. Obtain the solution of $\frac{\partial u}{\partial t} = \frac{\partial^2 u}{\partial x^2}$ with boundary conditions $u(x,0) = 3 \sin n \pi x$, (6) $u(l,t) = u(0,t) = 0, \ 0 < x < 1, t > 0$

OR

14. Solve using the method of separation of variables, $\frac{\partial u}{\partial x} = 4 \frac{\partial u}{\partial y}$ where $u(0, y) = 8e^{-3y}$ (6)

MODULE IV

15. Solve the equation $\frac{\partial^2 u}{\partial x^2} + \frac{\partial^2 u}{\partial y^2} = 0$ for the mesh with boundary values

OR

16. Solve numerically the equation $4U_{xx} = U_{tt}$ with the boundary conditions U(0,t) = (6) 0, U(4,t)=0 and the initial conditions $U_t(x,0) = 0$ and U(x,0) = x(4-x) taking h= 1(for 4 time steps)

MODULE V

17. Find the components of first and second fundamental tensors in spherical co- (6) ordinates

OR

18. A covariant tensor has components $x + y, xy, 2z - y^2$ in rectangular co-ordinates. (6) Find its covariant components in spherical co-ordinates.

MODULE VI

19. Following are the weekly sale records (in thousand Rs) of three salesman A, B and (6) C of a company during 13 sale-calls

А	300	400	300	500	
В	600	300	300	400	
С	700	300	400	600	500

Test whether the sales of three sales men are different

(6)

(6)

215A3

Machine type Worker А С D В 7 Ι 4 -2 -4 0 Π 6 123 4 III -6 -4 -8 IV 3 -2 -7 6 V 9 -2 2 -1

- OR
- 20. For the following data representing the number of units of production per day (6) turned out by 5 workers using four machines, set-up the ANOVA table.