215A3

SAINTGITS COLLEGE OF ENGINEERING

KOTTAYAM, KERALA

(AN AUTONOMOUS COLLEGE AFFILIATED TO
$\xrightarrow[\text { SAINTGITS }]{\text { LEARN.GROW.EXCEL }}$

PART A

(Answer all questions. Each question carries 3 marks)

1. Find the extremals of the function, $\int_{x_{0}}^{x_{1}} \frac{y^{\prime 2}}{x^{3}} d x$
2. Show that $J_{1 / 2}(x)=\sqrt{\left(\frac{2}{\pi x}\right) \sin x}$
3. What are the possible solutions for heat equation
4. Obtain the Rodrigue's formula.
5. Classify the equation $x^{2} \frac{\partial^{2} u}{\partial x^{2}}+y^{2} \frac{\partial^{2} u}{\partial y^{2}}=x \frac{\partial u}{\partial x}-y \frac{\partial u}{\partial y}$
6. Expand the summation convention $\bar{G}_{i j} \overline{d x^{l} d x^{\jmath}} ; i=1$ to $3, j=1$ to 3
7. Prove that contraction of outer product of tensors A^{p} and B_{q} is invariant
8. Outline the various steps for ANOVA testing in one way classification.

PART B

(Answer one full question from each module, each question carries 6 marks)

MODULE I

9. Solve the boundary value problem $y^{\prime \prime}-y+x=0,(0 \leq x \leq 1), y(0)=y(1)=0 \quad$ by Rayleigh-Ritz method

OR

10. Find the curve passing through the points $\left(x_{1}, y_{1}\right)$ and $\left(x_{2}, y_{2}\right)$ which rotates about x axis gives a minimum surface area.

MODULE II

11. (a) Express $J_{5}(x)$ in terms of $J_{0}(x)$ and $J_{1}(x)$
(b) Show that $\frac{d}{d x}\left(x^{n} J_{n}(x)\right)=x^{n} J_{n-1}(x)$

215A3

12. Solve in series, the equation $\frac{d^{2} y}{d x^{2}}+x y=0$

MODULE III

13. Obtain the solution of $\frac{\partial u}{\partial t}=\frac{\partial^{2} u}{\partial x^{2}}$ with boundary conditions $u(x, 0)=3 \sin n \pi x$, $u(l, t)=u(0, t)=0,0<x<1, t>0$

OR

14. Solve using the method of separation of variables, $\frac{\partial u}{\partial x}=4 \frac{\partial u}{\partial y}$ where $u(0, y)=8 e^{-3 y}$

MODULE IV

15. Solve the equation $\frac{\partial^{2} u}{\partial x^{2}}+\frac{\partial^{2} u}{\partial y^{2}}=0$ for the mesh with boundary values

60	60		60
40	u_{1}	u_{2}	50
		u_{4}	40

OR

16. Solve numerically the equation $4 U_{x x}=U_{t t}$ with the boundary conditions $U(0, t)=$ $0, U(4, t)=0$ and the initial conditions $U_{t}(x, 0)=0$ and $U(x, 0)=x(4-x)$ taking $\mathrm{h}=$ 1 (for 4 time steps)

MODULE V

17. Find the components of first and second fundamental tensors in spherical coordinates

OR

18. A covariant tensor has components $x+y, x y, 2 z-y^{2}$ in rectangular co-ordinates. Find its covariant components in spherical co-ordinates.

MODULE VI

19. Following are the weekly sale records (in thousand Rs) of three salesman A, B and C of a company during 13 sale-calls

A	300	400	300	500	
B	600	300	300	400	
C	700	300	400	600	500

Test whether the sales of three sales men are different

215A3

OR

20. For the following data representing the number of units of production per day turned out by 5 workers using four machines, set-up the ANOVA table.

Machine type					
Worker	A	B	C	D	
I	4	-2	7	-4	
II	6	0	12	3	
III	-6	-4	4	-8	
V	3	-2	6	-7	

