186A1

A

SAINTGITS COLLEGE OF ENGINEERING KOTTAYAM, KERALA

Course Code: 20CEGST101
 Course Name: APPLIED MATHEMATICS FOR CIVIL ENGINEERS

Max. Marks: 60
Duration: 3 Hours

PART A

(Answer all questions. Each question carries 3 marks)

1. Write the expansion of $J_{1}(x)$
2. Use convolution theorem to evaluate $L^{-1}\left[\frac{s}{\left(s^{2}+a^{2}\right)^{2}}\right]$
3. Define contraction of tensors.
4. Define Fredholm and Volterra integral equation.
5. Find the solution of the Laplace's equation when $\frac{d^{2} X}{d x^{2}}=p^{2} X$ where p is a constant.
6. What are the three possible solutions of wave equation?
7. Evaluate $\int_{-2}^{2} e^{-x / 2} d x$ by Gauss two point formula
8. What is the condition for convergence in Guass-Seidel method?

PART B
(Answer one full question from each module, each question carries 6 marks) MODULE I
9. Express $f(x)=x^{4}+3 x^{3}-x^{2}+5 x-2$ in terms of Legendre Polynomial

OR

10. Show that $e^{\frac{1}{2} x(t-1 / t)}=\sum_{n=-\infty}^{\infty} t^{n} J_{n}(x)$

MODULE II
11. Solve by transform method $y^{\prime \prime}+4 y^{\prime}+3 y=e^{-t}, \quad y(0)=y^{\prime}(0)=1$

OR

12. Find Fourier sine transform of $e^{-a x}$ and hence deduce Fourier cosine transform of $x e^{-a x}$

186A1

MODULE III

13. i) Prove that there is no distinction between contravariant and covariant vectors if the transformation law is of the form $\bar{x}^{i}=a_{m}^{i} x^{m}+b^{i}$, where a's and b's are constants such that $a_{r}^{i} a_{m}^{i}=\delta_{m}^{r}$
ii) Write down the law of transformation for the tensor $A_{i}^{j k}$

OR

14. A covariant tensor has components $x y, 2 y-z^{2}, x z$ in rectangular coordinates . Find its covariant components in spherical components.

MODULE IV
15. Solve $y(x)=(1+x)+\int_{0}^{x}(x-t) y(t) d t$

OR

16. Convert $y^{\prime \prime}(x)+y(x)=0 ; y(0)=y^{\prime}(0)=0$ into an integral equation.

MODULE V

17. A tightly stretched flexible string has its end at $x=0$ and $x=l$. At time $t=0$, the string is given a shape defined by $f(x)=\mu x(l-x)$, where μ is a constant and then released. Find the displacement of any point x of the string at any time $t>0$.

OR

18. Solve the Laplace's equation $\frac{\partial^{2} u}{\partial x^{2}}+\frac{\partial^{2} u}{\partial y^{2}}=0 \quad$ subject to the conditions

$$
u(0, y)=u(l, y)=u(x, 0)=0 \text { and } u(x, a)=\sin \frac{n \pi x}{l} .
$$

MODULE VI

19. Solve by decomposition method, the following system :
$2 x+y+3 z=13$
$3 x+y+4 z=17$

OR

20. Solve the equation $\frac{\partial^{2} u}{\partial x^{2}}+\frac{\partial^{2} u}{\partial y^{2}}=0$ for the mesh with boundary values

	60	60	60
60			
40	u_{1}	u_{2}	50
20	u_{3}	u_{4}	40
0	10	20	30

