Α

Register No: Name:

(AN AUTONOMOUS COLLEGE AFFILIATED TO APJ ABDUL KALAM TECHNOLOGICAL UNIVERSITY, THIRUVANANTHAPURAM)

FIRST SEMESTER M.TECH. DEGREE EXAMINATION(R), MARCH 2021 GEOMECHANICS AND STRUCTURES

(6)

(6)

3 Hours

Total Pages 2

(6)

(6)

186A1

MODULE III

- 13. i) Prove that there is no distinction between contravariant and covariant vectors if (4) the transformation law is of the form $\bar{x}^i = a_m^i x^m + b^i$, where a's and b's are constants such that $a_r^i a_m^i = \delta_m^r$
 - ii) Write down the law of transformation for the tensor A_i^{jk}

OR

14. A covariant tensor has components $xy, 2y - z^2, xz$ in rectangular coordinates . Find its (6) covariant components in spherical components.

MODULE IV

15. Solve
$$y(x) = (1 + x) + \int_0^x (x - t)y(t)dt$$

OR

16. Convert y''(x) + y(x) = 0; y(0) = y'(0) = 0 into an integral equation.

MODULE V

17. A tightly stretched flexible string has its end at x = 0 and x = l. At time t = 0, the string is (6) given a shape defined by $f(x) = \mu x(l - x)$, where μ is a constant and then released. Find the displacement of any point x of the string at any time t > 0.

OR

18. Solve the Laplace's equation $\frac{\partial^2 u}{\partial x^2} + \frac{\partial^2 u}{\partial y^2} = 0$ subject to the conditions (6) u(0, y) = u(l, y) = u(x, 0) = 0 and $u(x, a) = \sin \frac{n\pi x}{l}$.

MODULE VI

19. Solve by decomposition method, the following system : x+5y+z = 14 2x+y+3z = 133x+y+4z = 17

OR

20. Solve the equation $\frac{\partial^2 u}{\partial x^2} + \frac{\partial^2 u}{\partial y^2} = 0$ for the mesh with boundary values

(6)

(6)

(2)

(6)

(6)