

SAINTGITS
LEARNGROW.EXCEL

SAINTGITS COLLEGE OF ENGINEERING

 KOTTAYAM, KERALA(AN AUTONOMOUS COLLEGE AFFILIATED TO APJ ABDUL KALAM TECHNOLOGICAL UNIVERSITY, THIRUVANANTHAPURAM)

FIRST SEMESTER M.TECH. DEGREE EXAMINATION(R), MARCH 2021 GEOMECHANICS AND STRUCTURES

Course

Code:
Course
Name:
Max. Marks: 60
20CEGST107
ADVANCED DESIGN OF CONCRETE STRUCTURES

Duration: 3 Hours

(Answer all full questions) MODULE I

1. An RC braced column $300 \times 400 \mathrm{~mm}$ is subjected to $\mathrm{Pu}=1500 \mathrm{kN}$, ultimate moment $M y=60 \mathrm{kNm}$ at top and ultimate moment $\mathrm{My}=8 \mathrm{kNm}$ at bottom. The column is bent in double curvature about minor axis. Determine the design moment. The total unsupported length is 8 m , effective length is 6 m about both axes. Assume $\mathrm{Ka}=1$.

OR

2. A corbel is to be attached to an RC column of size $250 \times 400 \mathrm{~mm}$ at its shorter side. The corbel is to carry a factored load of 400 kN at a distance of 200 mm from the face of the column. Design the corbel using M25 concrete and Fe415 steel. Sketch the detailing.

MODULE II

3. (a) A walkway consists of a slab 5.4 m between edges supported on spandrel beams $200 \mathrm{~mm} \times 600 \mathrm{~mm}$ in size, which in turn is carried on $300 \mathrm{~mm} \times 200 \mathrm{~mm}$ columns spaced at 7 m centres. Assuming that the total factored load on the walkway is $6 \mathrm{kN} / \mathrm{m}^{2}$ and the slab thickness is 150 mm , determine the design torsional moment in the spandrel (edge) beams and the walkway slab.
(b) Draw the Yield line pattern of
i) Square Slab with simply supported edges acting udl of W/unit area.
ii) Rectangular slab with two edges simply supported and other two adjacent edges are fixed acted upon a udl of W/unit area

OR

4. Calculate design moments in interior and exterior panel of flat slab with panel size $5 \mathrm{~m} \times 6 \mathrm{~m}$ supported by columns of size $500 \mathrm{~mm} \times 500 \mathrm{~mm}$, floor to floor height is 4.5 m . Provide suitable drop. Take live load as $4 \mathrm{kN} / \mathrm{m}^{2}$ and a finishing load of $1 \mathrm{kN} / \mathrm{m}^{2}$. Use M25 concrete and Fe415 steel.

MODULE III

5. (a) Bring out the differences between ordinary RCC wall and shear wall, with sketches
(b) Discuss the detailed design procedure of RCC grid floor.

268A1

6. A reinforced concrete waffle slab for a hall of size 9 mx 12 m . It is made of precast funicular shells so that the ribs are spaced at 1.5 m center to center. The LL on the floor is $2 \mathrm{KN} / \mathrm{m}^{2}$. Use M20 concrete and Fe415 steel. Analyze the baffle slab by Rankine Grasshoff for moment and shear. Design the completely and sketch the reinforcement.

MODULE IV

7. Analyse the building frame subjected to horizontal forces as shown in the figure below using Portal method and determine the Moments at the columns in each storey.

OR

8. (a) Write down the assumptions made in Cantilever method
(b) Discuss the detailed analysis procedure of multi-storey building using Cantilever method

MODULE V

9. A Continues beam ABC of span 6 m each, $\mathrm{A} \& \mathrm{~B}$ simple supported and its continuous over support B, carries a uniformly distributed service load of $D L=25 \mathrm{kN} / \mathrm{m}$ and $L L=$ $15 \mathrm{kN} / \mathrm{m}$. Draw the bending moment envelop diagram as per recommendations of IS 456:2000.

OR

10. (a) Briefly describe about the inelastic behaviour of beam
(b) Explain moment rotation curve

MODULE VI

11. (a) What are the measures to be adopted for ensuring quality of concrete structures?
(b) Explain the different procedures for strengthening of existing structures.

OR

12. Draw the Ductile detailing diagram of beam, beam-column junction, column-footing.
