SAINTGITS COLLEGE OF ENGINEERING KOTTAYAM, KERALA

FIRST SEMESTER INTEGRATED M.C.A DEGREE EXAMINATION(R), MARCH 2021

Course Code: 20IMCAT103

Course Name: BASIC MATHEMATICS

Max. Marks: 60
Duration: 3 Hours

PART A
(Answer all questions. Each question carries 3 marks)

1. Define power set of a set. Find the power set of $\{a, b, c\}$.
2. State and prove associative laws for set operations.
3. Define Cartesian product of two sets. Find the cartesian product of $A=\{1,2\}$ and $B=\{-1,0\}$
4. Is the 'divides' relation an equivalence relation on the set of integers; Justify.
5. Distinguish injective and surjective functions.
6. Let $f: A \rightarrow B$ is defined by $f(x)=2 x+3$ and $g: B \rightarrow C$ defined by $g(x)=x^{2}$. Find $f \circ g$ and $g \circ f$.
7. Obtain the value of $f^{\prime}(1)$ if $f(x)=\frac{x}{x+1}$.
8. Define derivative of a function and give its geometrical interpretation.
9. Evaluate $\int_{1}^{2} \frac{2 x}{x^{2}+1} d x$
10. State and explain with the help of an example, 'The fundamental theorem of calculus'.

PART B

(Answer one full question from each module, each question carries 6 marks) MODULE I
11. a) State and prove inclusion-exclusion principle for two sets.
b) Draw the Venn Diagrams of,
i. $\quad A \cap B^{\prime}$
ii. $\quad(A-B) \cup(B-A)$

OR

12. Out of 40 students in a class, 22 opted for 'Elective I' and 28 opted for 'Elective II'. Assume that each one opted for at least one of the two electives. How many opted for,
i. Only Elective I not II
ii. Only Elective II not I
iii. Both Electives

MODULE II

13. Relation R on the set of real integers is defined by $\mathrm{a} R \mathrm{~b}$ if and only if $1+\mathrm{ab}>0$. Check

143A3

OR

14. Show that the divisibility relation is a partial ordering relation on the set of positive integers, but not in the set of integers.

MODULE III

15. Consider a function, $f: Z \rightarrow Z$ defined by $f(x)=4 x-9$. Is the function invertible? If yes, find the inverse.

OR

16. Find the domain of the functions

$$
\begin{array}{ll}
\text { i. } & f(x)=\sqrt{49-x^{2}} \tag{6}\\
\text { ii. } & g(x)=\frac{2}{(x-1)(x+1)}
\end{array}
$$

MODULE IV

17. a) Obtain the value of $y^{\prime}(1), y^{\prime \prime}(1)$ and $y^{\prime \prime \prime}(1)$ for $y(x)=\left(2 x-\frac{3 x^{2}}{2}+\frac{x}{x+1}\right)$
b) Find $f^{\prime}(1) \& f^{\prime \prime}(0)$ for $f(x)=x^{2} e^{2 x}$

OR

18. a) Evaluate $f^{\prime}(2 \pi)$, for $f(x)=x \sin x$
b) Show that $\frac{d y}{d x}=3 x^{2}$, for $y=x^{3}$ by using the definition of derivative

MODULE V

19. a) Calculate the area under the curve $y=\frac{1}{\sqrt{x}}$ from $x=4$ to $x=9$
b) Compute $\int \frac{5 x^{2}}{x^{3}+1} d x$

OR

20. a) Evaluate $\int_{1}^{2} f(x) d x$, where $f(x)=x^{2}-3 x^{3}+\frac{1}{x}$
b) Using integration by parts, Evaluate $\int e^{2 x} \cos 2 x d x$.
