B Register No.:		Name		Total Pages	2
	SAINTGITS COL KOTTA	LEGE AYAM,	OF ENGINEER KERALA	ING	

(AN AUTONOMOUS COLLEGE AFFILIATED TO LEARN.GROWLEXCEL APJ ABDUL KALAM TECHNOLOGICAL UNIVERSITY, THIRUVANANTHAPURAM)

FIRST SEMESTER INTEGRATED M.C.A DEGREE EXAMINATION(R), MARCH 2021

Course Code: 20IMCAT103

Course Name: BASIC MATHEMATICS

Max. Marks: 60

Duration: 3 Hours

(3)

PART A

(Answer all questions. Each question carries 3 marks)

- 1. Define power set of a set. Find the power set of $\{a, b, c\}$.
- 2. State and prove associative laws for set operations.
- 3. Define Cartesian product of two sets. Find the cartesian product of $A = \{1,2\}$ and $B = \{-1,0\}$
- 4. Is the 'divides' relation an equivalence relation on the set of integers; Justify.
- 5. Distinguish injective and surjective functions.
- 6. Let $f: A \to B$ is defined by f(x) = 2x + 3 and $g: B \to C$ defined by $g(x) = x^2$. Find $f \circ g$ and $g \circ f$.
- 7. Obtain the value of f'(1) if $f(x) = \frac{x}{x+1}$.
- 8. Define derivative of a function and give its geometrical interpretation.
- 9. Evaluate $\int_{1}^{2} \frac{2x}{x^{2}+1} dx$

b)

10. State and explain with the help of an example, 'The fundamental theorem of calculus'.

PART B

(Answer one full question from each module, each question carries 6 marks)

MODULE I

- 11. a) State and prove inclusion-exclusion principle for two sets. (3)
 - Draw the Venn Diagrams of,
 - i. $A \cap B'$
 - ii. $(A-B) \cup (B-A)$

OR

- Out of 40 students in a class, 22 opted for 'Elective I' and 28 opted for 'Elective II'. (6) Assume that each one opted for at least one of the two electives. How many opted for,
 - i. Only Elective I not II
 - ii. Only Elective II not I
 - iii. Both Electives

MODULE II

13. Relation *R* on the set of real integers is defined by a*R*b if and only if 1+ab>0. Check (6) whether *R* is an equivalence relation.

143A3

OR

14. Show that the divisibility relation is a partial ordering relation on the set of positive (6) integers, but not in the set of integers.

MODULE III

15. Consider a function, $f: Z \to Z$ defined by f(x) = 4x - 9. Is the function invertible? If yes, (6) find the inverse.

OR

16. Find the domain of the functions i. $f(x) = \sqrt{49 - x^2}$ ii. $a(x) = \frac{2}{x^2}$

a(x)	_ 2
g(x)	$-\frac{1}{(x-1)(x+1)}$

MODULE IV

17. a) Obtain the value of
$$y'(1), y''(1)$$
 and $y'''(1)$ for $y(x) = \left(2x - \frac{3x^2}{2} + \frac{x}{x+1}\right)$ (3)

b) Find f'(1) & f''(0) for $f(x) = x^2 e^{2x}$

OR

(3)

(6)

18.	a)	Evaluate $f'(2\pi)$, for $f(x) = x \sin x$	(3)
	b)	Show that $\frac{dy}{dx} = 3x^2$, for $y = x^3$ by using the definition of derivative	(3)

MODULE V

19. a) Calculate the area under the curve $y = \frac{1}{\sqrt{x}}$ from x = 4 to x = 9 (3)

b) Compute
$$\int \frac{5x^2}{x^3+1} dx$$
 (3)

OR

20. a) Evaluate
$$\int_{1}^{2} f(x) dx$$
, where $f(x) = x^{2} - 3x^{3} + \frac{1}{x}$ (3)

b) Using integration by parts, Evaluate $\int e^{2x} \cos 2x \, dx$. (3)
