Α		Total Pages:	3
Register No.:	Name:		
	SAINTGITS COLLEGE KOTTAYAM,		
SAINTGITS LEARN.GROW.EXCEL APJ	(AN AUTONOMOUS COLLEGE AFFILIATED TO BDUL KALAM TECHNOLOGICAL UNIVERSITY, THIRUVANANTHAPURAM)		
FIRS	T SEMESTER B.TECH DEGREE EXA	MINATION(R), MARCH-APRIL 20	021
Course Code:	20MAT101		
Course Name:	LINEAR ALGEBRA AND CALCULUS		
Max. Marks:	100	Duration:	3 Hours
PART A			

(Answer all questions. Each question carries 3 marks)

- 1. Determine the value of 'k' such that the rank of the matrix $A = \begin{bmatrix} 1 & 5 & 4 \\ 0 & 3 & 2 \\ k & 13 & 10 \end{bmatrix}$ is 2.
- 2. Reduce the quadratic form into the principal axes form. $x^2 + 2y^2 + z^2 - 2xy + 2yz$
- 3. Use chain rule to find $\frac{dw}{dx}$ at (0,1,2) for w = xy + yz, y = sinx, $z = e^x$
- 4. Find the slope of the surface $z = 10 4x^2 y^2$ in the x direction and in the y direction at the point (1,2,2).
- 5. Evaluate $\iint_R (x^2 + y^2) dx dy$ where R is the region taken over the first quadrant for which $x + y \le 1$.
- 6. Evaluate $\int_0^1 \int_0^{\ln 3} \int_0^{\ln 2} e^{2x+y-z} dz dy dx$.
- 7. Express the repeating decimal 5.646464.....as a fraction .
- 8. Determine whether the series $\sum_{k=2}^{\infty} (-1)^k \frac{k}{k-1}$ converges.
- 9. Find the Taylor series expansion for the function e^x about $x_0 = -1$.
- 10. Evaluate the coefficient a_0 in the Fourier series expansion for f(x) = |sinx| in $-\pi < x < \pi$.

PART B

(Answer one full question from each module, each question carries 14 marks)

MODULE I

- 11. a) Test for consistency and solve 2x y + 3z = 8, -x + 2y + z = 4, 3x + y 4z = 0. (6)
 - b) Find out what kind of conic section or pair of straight lines is given by the quadratic (8) form $x^2 12 xy + y^2 = 70$ and express $\begin{bmatrix} x \\ y \end{bmatrix}$ in terms of new coordinates.

OR

120A5

12. a) Reduce the matrix
$$A = \begin{bmatrix} 2 & 3 & -1 & -1 \\ 1 & -1 & -2 & -4 \\ 3 & 1 & 3 & -2 \\ 6 & 3 & 0 & -7 \end{bmatrix}$$
 to Row Echelon form and hence find its rank. (6)

b) Diagonalize the matrix
$$A = \begin{bmatrix} 2 & -1 & 1 \\ -1 & 2 & -1 \\ 1 & -1 & 2 \end{bmatrix}$$
. (8)

MODULE II

Let $w = 4x^2 + 4y^2 + z^2$, $x = \rho \sin \varphi \cos \theta$, $y = \sin \varphi \sin \theta$, $z = \rho \cos \varphi$. Find $\frac{\partial w}{\partial \rho}$, $\frac{\partial w}{\partial \varphi}$, $\frac{\partial w}{\partial \theta}$. 13. a) Find the local linear approximation L(x,y) to $f(x,y) = \frac{1}{\sqrt{x^2+y^2}}$ at the point P(4,3). b) Compare the error in approximating f by L at the specified point Q(3.92, 3.01) with (8) the distance between P and O.

OR

14. a) If
$$u = f(\frac{x}{y}, \frac{y}{z}, \frac{z}{x})$$
 find the value of $x\frac{\partial u}{\partial x} + y\frac{\partial u}{\partial y} + z\frac{\partial u}{\partial z}$.

Locate all relative extrema and saddle points (if any) of $f(x, y) = 4xy - y^4 - x^4$. b)

MODULE III

- Evaluate $\iint_R y \, dA$ where R is the region in the first quadrant enclosed between the circle $x^2 + y^2 = 25$ and the line x + y = 5. 15. a)
 - Use triple integral to evaluate the volume of the solid bounded by the surface $y = x^2$ (8) b) and the planes y + z = 4 and z = 0.

OR

- Evaluate the integral $\int_0^2 \int_{\frac{y}{2}}^1 \cos(x^2) dx dy$ by reversing the order of integration. 16. a)
 - Use polar coordinates to evaluate $\iint_R \frac{1}{1+x^2+y^2} dA$ where R is the sector in the first quadrant bounded by y = 0, y = x and $x^2 + y^2 = 9$. (8) b)

MODULE IV

17. a) Determine whether the alternating series
$$\sum_{k=1}^{\infty} (-1)^{k+1} \frac{k+7}{k(k+4)}$$
 is absolutely convergent.

(6)

b) Find the sum of the series
$$\sum_{k=1}^{\infty} \left(\frac{1}{5^k} - \frac{1}{k(k+1)} \right)$$
 (8)

OR

18. a) Determine whether the series
$$\sum_{k=1}^{\infty} \frac{1}{\sqrt{k(k+1)}}$$
 converges. (6)

Determine whether the series $\sum_{k=1}^{\infty} (-1)^{k+1} \frac{k+3}{k(k+1)}$ converges absolutely, converges (8) b) conditionally or diverges.

(6)

(8)

(6)

(6)

(6)

120A5

MODULE V

- a) Find the Maclaurin series expansion for the function $\sin x$. 19.
 - b) Find the Fourier series representation of $f(x) = x^2$ in $[-\pi, \pi]$ and deduce the value of (8) $1 \frac{1}{2^2} + \frac{1}{3^2} \frac{1}{4^2} + \cdots \dots$

(6)

OR

- Obtain the Fourier series expansion for the function $f(x) = \begin{cases} 0, & -\pi < x < \pi \\ x^2, & 0 < x < \pi \end{cases}$ Find the half range sine series of $f(x) = e^x$ in (0,1). (8) 20. a) (6)
 - b)