120A5

A

SAINTGITS COLLEGE OF ENGINEERING KOTTAYAM, KERALA

SAINTGITS

(AN AUTONOMOUS COLLEGE AFFILIATED TO APJ ABDUL KALAM TECHNOLOGICAL UNIVERSITY, THIRUVANANTHAPURAM)
FIRST SEMESTER B.TECH DEGREE EXAMINATION(R), MARCH-APRIL 2021
Course Code: 20MAT101

Course Name:
LINEAR ALGEBRA AND CALCULUS

Max. Marks: 100

Duration: 3 Hours

PART A
(Answer all questions. Each question carries 3 marks)

1. Determine the value of ' k ' such that the rank of the matrix $A=\left[\begin{array}{ccc}1 & 5 & 4 \\ 0 & 3 & 2 \\ k & 13 & 10\end{array}\right]$ is 2 .
2. Reduce the quadratic form into the principal axes form.
$x^{2}+2 y^{2}+z^{2}-2 x y+2 y z$
3. Use chain rule to find $\frac{d w}{d x}$ at $(0,1,2)$ for $w=x y+y z, y=\sin x, z=e^{x}$
4. Find the slope of the surface $z=10-4 x^{2}-y^{2}$ in the x direction and in the y direction at the point $(1,2,2)$.
5. Evaluate $\iint_{R}\left(x^{2}+y^{2}\right) d x d y$ where R is the region taken over the first quadrant for which $x+y \leq 1$.
6. Evaluate $\int_{0}^{1} \int_{0}^{\ln 3} \int_{0}^{\ln 2} e^{2 x+y-z} d z d y d x$.
7. Express the repeating decimal 5.646464 \qquad as a fraction.
8. Determine whether the series $\sum_{k=2}^{\infty}(-1)^{k} \frac{k}{k-1}$ converges.
9. Find the Taylor series expansion for the function e^{x} about $x_{0}=-1$.
10. Evaluate the coefficient a_{0} in the Fourier series expansion for $f(x)=|\sin x|$ in $-\pi<x<\pi$.

PART B
 (Answer one full question from each module, each question carries 14 marks)
 MODULE I

11. a) Test for consistency and solve $2 x-y+3 z=8,-x+2 y+z=4,3 x+y-4 z=0$.
b) Find out what kind of conic section or pair of straight lines is given by the quadratic form $x^{2}-12 x y+y^{2}=70$ and express $\left[\begin{array}{l}x \\ y\end{array}\right]$ in terms of new coordinates.
12. a) Reduce the matrix $A=\left[\begin{array}{cccc}2 & 3 & -1 & -1 \\ 1 & -1 & -2 & -4 \\ 3 & 1 & 3 & -2 \\ 6 & 3 & 0 & -7\end{array}\right]$ to Row Echelon form and hence find its rank.
b) Diagonalize the matrix $A=\left[\begin{array}{ccc}2 & -1 & 1 \\ -1 & 2 & -1 \\ 1 & -1 & 2\end{array}\right]$.

MODULE II

13. a) Let $w=4 x^{2}+4 y^{2}+z^{2}, x=\rho \sin \varphi \cos \theta, \quad y=\sin \varphi \sin \theta, z=\rho \cos \varphi$. Find $\frac{\partial w}{\partial \rho}, \frac{\partial w}{\partial \varphi}, \frac{\partial w}{\partial \theta}$.
b) Find the local linear approximation $\mathrm{L}(\mathrm{x}, \mathrm{y})$ to $f(x, y)=\frac{1}{\sqrt{x^{2}+y^{2}}}$ at the point $\mathrm{P}(4,3)$. Compare the error in approximating f by L at the specified point $Q(3.92,3.01)$ with the distance between P and Q .

OR

14. a) If $u=f\left(\frac{x}{y}, \frac{y}{z}, \frac{z}{x}\right)$ find the value of $x \frac{\partial u}{\partial x}+y \frac{\partial u}{\partial y}+z \frac{\partial u}{\partial z}$.
b) Locate all relative extrema and saddle points (if any) of $f(x, y)=4 x y-y^{4}-x^{4}$.

MODULE III

15. a) Evaluate $\iint_{R} y d A$ where R is the region in the first quadrant enclosed between the circle $x^{2}+y^{2}=25$ and the line $x+y=5$.
b) Use triple integral to evaluate the volume of the solid bounded by the surface $y=x^{2}$ and the planes $y+z=4$ and $z=0$.

OR

(6)
16. a) Evaluate the integral $\int_{0}^{2} \int_{\frac{y}{2}}^{1} \cos \left(x^{2}\right) d x d y$ by reversing the order of integration.
b) Use polar coordinates to evaluate $\iint_{R} \frac{1}{1+x^{2}+y^{2}} d A$ where R is the sector in the first quadrant bounded by $y=0, y=x$ and $x^{2}+y^{2}=9$.

MODULE IV

17. a) Determine whether the alternating series $\sum_{k=1}^{\infty}(-1)^{k+1} \frac{k+7}{k(k+4)}$ is absolutely convergent.
b) Find the sum of the series $\sum_{k=1}^{\infty}\left(\frac{1}{5^{k}}-\frac{1}{k(k+1)}\right)$

OR

18. a) Determine whether the series $\sum_{k=1}^{\infty} \frac{1}{\sqrt{k(k+1)}}$ converges.
b) Determine whether the series $\sum_{k=1}^{\infty}(-1)^{k+1} \frac{k+3}{k(k+1)}$ converges absolutely, converges conditionally or diverges.

MODULE V

19. a) Find the Maclaurin series expansion for the function $\sin x$.
b) Find the Fourier series representation of $f(x)=x^{2}$ in $[-\pi, \pi]$ and deduce the value of $1-\frac{1}{2^{2}}+\frac{1}{3^{2}}-\frac{1}{4^{2}}+\cdots \ldots \ldots$

OR
20. a) Obtain the Fourier series expansion for the function $f(x)= \begin{cases}0, & -\pi<x<\pi \\ x^{2}, & 0<x<\pi\end{cases}$
b) Find the half range sine series of $f(x)=e^{x}$ in (0,1).

