A

Register No.:
Name

SAINTGITS COLLEGE OF ENGINEERING KOTTAYAM, KERALA

$\frac{\text { SAINTGITS }}{\text { LEARN.GROW:EXCEL }}$
(AN AUTONOMOUS COLLEGE AFFILIATED TO APJ ABDUL KALAM TECHNOLOGICAL UNIVERSITY, THIRUVANANTHAPURAM) FIRST SEMESTER M.C.A DEGREE EXAMINATION(S), JULY 2021

Course Code: 20MCAT101

Course Name: MATHEMATICAL FOUNDATIONS FOR COMPUTING
Max. Marks: 60 Duration: 3 Hours

PART A
 (Answer all questions. Each question carries 3 marks)

1. Let A, B and C be sets. Show that $\overline{(A \cup(B \cap C))}=(\bar{C} \cup \bar{B}) \cap \bar{A}$
2. Find the sets A and B if $A-B=\{1,5,7,8\} ; B-A=\{2,10\}$ and $A \cap B=\{3,6,9\}$?
3. Use Euclidean algorithm to obtain integers x and y satisfying $\operatorname{gcd}(56,72)=56 x+72 y$
4. Solve the recurrence relation $\mathrm{a}_{\mathrm{n}}=7 \mathrm{a}_{\mathrm{n}-1}$; where $\mathrm{n} \geq 1$ and $\mathrm{a}_{2}=98$
5. How many edges are there in a graph with 20 vertices each of degree 3?
6. Find the adjacency matrix to represent the pseudograph

7. Define rank of a matrix? Find the rank of the matrix $\left[\begin{array}{lll}1 & 2 & 3 \\ 2 & 3 & 4 \\ 0 & 2 & 2\end{array}\right]$
8. Determine whether the vectors $(1,0,2),(0,1,1)$ and $(2,1,0)$ are linearly independent or not
9. State the principle of least squares
10. What are the normal equations for fitting of a second-degree parabola $y=a x^{2}+b x+c$

PART B
 (Answer one full question from each module, each question carries 6 marks) MODULE I

11. a) Define Reflexive and symmetric closures of a relation
b) Let R be the relation on the set $\{0,1,2,3\}$ containing the ordered pairs $(0,1),(1,1),(1,2)$, (4) $(2,0),(2,2)$ and $(3,0)$. Find the reflexive and symmetric closures of R ?

OR
12. Let $R=\{(a, b) / a \leq b\}$ be a relation on a set of integers. Is R a reflexive, symmetric, antisymmetric and transitive relation? Justify your answer.

MODULE II

13. Solve the following set of simultaneous congruences

$$
\begin{gathered}
x \equiv 5(\bmod 11) \\
x \equiv 14(\bmod 29) \\
x \equiv 15(\bmod 31) \\
\text { OR }
\end{gathered}
$$

14. Solve the non-homogeneous recurrence relation $a_{n+2}-4 a_{n+1}+3 a_{n}=-200$; where $\mathrm{n} \geq 0, \mathrm{a}_{0}=3000, \mathrm{a}_{1}=3300$

MODULE III

15. Find the length of the shortest path between a and z in the weighted graph using Dijkstra's algorithm

OR

16 Determine whether the Petersen graph is planar?

MODULE IV

17. a) Show that the following system of equations is consistent

$$
\begin{gathered}
x+2 y+z=3 \\
2 x+3 y+2 z=5 \\
3 x-5 y+5 z=2 \\
3 x+9 y-z=4
\end{gathered}
$$

b) Solve the above system of equations

OR

18. a) Find the principal axes form of the quadratic $x^{2}-12 x y+y^{2}=70$?
b) Find out what kind of a conic section is given by the above quadratic form?

MODULE V

19. Fit a straight-line $y=a x+b$ to the following data

x	1	2	3	4	6	8
y	2.4	3	3.6	4	5	6

OR
20. Find the rank correlation coefficients for the following data

X	15	20	28	12	40	60	20	80
Y	40	30	50	30	20	10	30	60

