A

SAINTGITS COLLEGE OF ENGINEERING KOTTAYAM, KERALA

Course Code: 20MAT101

Course Name: LINEAR ALGEBRA AND CALCULUS

Max. Marks:
100

Duration: 3 Hours

PART A
(Answer all questions. Each question carries 3 marks)

1. Determine the rank of the matrix $A=\left[\begin{array}{lll}1 & 2 & 3 \\ 3 & 4 & 5 \\ 4 & 5 & 6\end{array}\right]$
2. Find the sum and product of the Eigen values of $A=\left[\begin{array}{ccc}3 & 1 & -1 \\ 0 & 2 & 6 \\ 0 & 0 & 6\end{array}\right]$ without using its characteristic equation.
3. Show that the function $z=x^{2}-y^{2}+2 x y$ satisfies Laplace's equation $\frac{\partial^{2} z}{\partial x^{2}}+\frac{\partial^{2} z}{\partial y^{2}}=0$
4. Find the derivative of $z=3 x^{2} y^{3}$ with respect to t along the path $x=t^{4}, y=t^{3}$ using chain rule.
5. Find the volume under the surface $z=3 x^{3}+3 x^{2} y$ and over the rectangle $R=\{(x, y):-1 \leq x \leq$ $3,0 \leq y \leq 2\}$.
6. Change the order of integration in $\int_{0}^{1} \int_{x}^{1} \frac{x}{x^{2}+y^{2}} d y d x$ and hence evaluate the same.
7. Test the convergence of the series $\sum_{k=1}^{\infty} \frac{99^{k}}{k!}$.
8. Express the repeating decimal $0.451141414 \ldots$ as a fraction.
9. Find the Taylor series for $f(x)=e^{-x}$ about $x=\ln 3$ up to third degree terms.
10. Find the Fourier half range cosine series of $f(x)=e^{x}$ in $0<x<1$.

PART B
 (Answer one full question from each module, each question carries 14 marks) MODULE I

11. a) Using Gauss Elimination method find the solution of the system of equations

$$
\begin{gather*}
8 y+6 z=-4 \tag{7}\\
-2 x+4 y-6 z=18 \\
x+y-z=2
\end{gather*}
$$

b) Find all eigen values and eigen vectors of the matrix $A=\left[\begin{array}{ccc}2 & 1 & 0 \\ 0 & 1 & -1 \\ 0 & 2 & 4\end{array}\right]$

OR
12. a) Find the matrix of transformation that diagonalize the matrix $A=\left[\begin{array}{ccc}3 & 1 & -1 \\ -2 & 1 & 2 \\ 0 & 1 & 2\end{array}\right]$. Also write the diagonal matrix.
b) What kind of conic section is given by the quadratic form $x^{2}-x y+y^{2}=8$ Transform it to principal axis.

MODULE II

13. a) Let $w=\ln \left(e^{r}+e^{s}+e^{t}+e^{u}\right)$. Show that $w_{r s t u}=-6 e^{r+s+t+u-4 w}$.
b) Locate all relative extrema of $f(x, y)=x^{2}+x y+y^{2}-6 x$.

OR

14. a) Find the Local linear approximation to $f(x, y)=\ln x y$ at the point (1,2). Use it to approximate $f(1.01,2.01)$.
b) The length and width of a rectangle are measured with errors of at most 3% and 4%, respectively. Use differentials to approximate the maximum percentage error in the calculated area.

MODULE III

15. a) Evaluate $\iint_{R}\left(2 x-y^{2}\right) d A$ over the triangular region R enclosed between the lines $y=-x+1, y=x+1$ and $y=3$.
b) Evaluate the double integral by converting to polar coordinates

$$
\begin{gather*}
\int_{0}^{1} \int_{0}^{\sqrt{1-y^{2}}} \cos \left(x^{2}+y^{2}\right) d x d y \\
\mathbf{O R} \tag{7}
\end{gather*}
$$

16. a) Find the mass and center of gravity of the lamina with density $\delta(x, y)=x+2 y$ is bounded by the x -axis, the line $x=1$, and the curve $y=\sqrt{x}$.
b) Use triple integral to find the volume of the solid in the first octant bounded by the coordinate planes and the plane $3 x+6 y+4 z=12$.

MODULE IV

17. a) Determine whether the series converges (i) $\sum_{k=1}^{\infty}\left(\frac{-3}{4}\right)^{k-1}$ (ii) $\sum_{k=1}^{\infty} \frac{1}{(k+3)(k+4)}$
b) Determine the convergence or divergence of the series $\sum_{k=1}^{\infty}(-1)^{k} \frac{(2 k+1)!}{2^{k}}$.

OR
18. a) Test whether the following series is absolutely convergent or conditionally Convergent $\sum_{k=3}^{\infty}(-1)^{k} \frac{\ln k}{k}$.
b) Check the convergence of the series $\frac{3}{4}+\frac{3.4}{4.6}+\frac{3.4 .5}{4.6 .8}+\frac{3.4 .5 .6}{4.6 .8 .10}+\cdots$.

MODULE V

19. a) Obtain the Fourier series for the function $f(x)=(\pi-x)^{2}, \quad-\pi<x<\pi$
b) Find the half range sine series for $f(x)=x \cos x$ in $(0, \pi)$.

OR
20. a) Find the Fourier series expansion of $f(x)=x^{2}$ in $(-\pi, \pi)$. Using Parseval's identity deduce that,

$$
\begin{equation*}
\frac{\pi^{4}}{90}=1+\frac{1}{2^{4}}+\frac{1}{3^{4}}+\frac{1}{4^{4}}+\cdots \tag{7}
\end{equation*}
$$

b) Obtain the Fourier series for the function $f(x)=\pi x$ in [0,2] with period 2 .

