	A				Total Pages:	3
Regis	ster No.: .		Name:			
P	>	SAINTGITS K	COLLEGE OTTAYAM,	OF ENGI KERALA	NEERING	
SAINTO	APJ AE	(AN AUTO) BDUL KALAM TECHI	NOMOUS COLL NOLOGICAL UN	EGE AFFILIA' IVERSITY, TH	FED TO IIRUVANANTHAPUF	RAM)
	F	IRST SEMESTER B.	.TECH DEGREE	EXAMINAT	ON(S), JULY 2021	
Cour	se Code:	20MAT101				
Cour	se Name:	LINEAR ALGEBRA	A AND CALCULU	S		
Max.	Marks:	100			Duration:	3 Hours
		(Answer all que	PART estions. Each q	A juestion carr	ies 3 marks)	
1.	Determine	e the rank of the mat	$\operatorname{trix} A = \begin{bmatrix} 1 & 2 & 3 \\ 3 & 4 & 5 \\ 4 & 5 & 6 \end{bmatrix}$]		
2.	Find the s	um and product of t stic equation.	he Eigen values	of $A = \begin{bmatrix} 3 & 1\\ 0 & 2\\ 0 & 0 \end{bmatrix}$	$\begin{bmatrix} -1\\6\\6 \end{bmatrix}$ without using i	its
3.	Show that	the function $z = x^2$.	$-y^2 + 2xy$ satisf	ies Laplace's (equation $\frac{\partial^2 z}{\partial x^2} + \frac{\partial^2 z}{\partial y^2} = 0$	0
4.	Find the d	lerivative of $z = 3x^2y^3$	³ with respect to	t along the p	ath $x = t^4$, $y = t^3$ usi	ing chain rule
5.	Find the volume $3, 0 \le y \le 2$	olume under the sur 2}.	rface $z = 3x^3 + 3$.	x^2y and over z	the rectangle $R = \{(x \in \mathbb{R}) x \in \mathbb{R}\}$	$(x, y): -1 \le x \le x$
6.	Change th	e order of integration	n in $\int_0^1 \int_x^1 \frac{x}{x^2 + y^2} dy$	vdx and hence	e evaluate the same.	
7.	Test the co	onvergence of the set	ries $\sum_{k=1}^{\infty} \frac{99^k}{k!}$.			
8.	Express th	ne repeating decimal	0.451141414	as a fraction.		

- 9. Find the Taylor series for $f(x) = e^{-x}$ about $x = \ln 3$ up to third degree terms.
- 10. Find the Fourier half range cosine series of $f(x) = e^x$ in 0 < x < 1.

PART B

(Answer one full question from each module, each question carries 14 marks) MODULE I

11. a) Using Gauss Elimination method find the solution of the system of equations

$$8y + 6z = -4$$

$$-2x + 4y - 6z = 18$$

$$x + y - z = 2$$
(7)

(7)

(7)

		[2	1	0]	(7)
b)	Find all eigen values and eigen vectors of the matrix <i>A</i> =	0	1	-1	(7)
		lo	2	4	

OR

12.	a)	Find the matrix of transformation that diagonalize the matrix $A = \begin{bmatrix} 3 & 1 & -1 \\ -2 & 1 & 2 \\ 0 & 1 & 2 \end{bmatrix}$. Also write the diagonal matrix.	(7)
	b)	What kind of conic section is given by the quadratic form $x^2 - xy + y^2 = 8$ Transform it to principal axis.	(7)

MODULE II

13. a) Let
$$w = \ln(e^r + e^s + e^t + e^u)$$
. Show that $w_{rstu} = -6e^{r+s+t+u-4w}$. (7)

b) Locate all relative extrema of $f(x, y) = x^2 + xy + y^2 - 6x$.

OR

- 14. a) Find the Local linear approximation to $f(x, y) = \ln xy$ at the point (1,2). Use it to (7) approximate f(1.01,2.01).
 - b) The length and width of a rectangle are measured with errors of at most 3% and 4%, respectively. Use differentials to approximate the maximum percentage error in the calculated area.

MODULE III

- 15. a) Evaluate $\int \int_{R} (2x y^2) dA$ over the triangular region *R* enclosed between the lines (7) y = -x + 1, y = x + 1 and y = 3.
 - b) Evaluate the double integral by converting to polar coordinates

$$\int_{0}^{1} \int_{0}^{\sqrt{1-y^2}} \cos(x^2 + y^2) dx dy$$
(7)

OR

- 16. a) Find the mass and center of gravity of the lamina with density $\delta(x, y) = x + 2y$ is (7) bounded by the x-axis, the line x = 1, and the curve $y = \sqrt{x}$.
 - b) Use triple integral to find the volume of the solid in the first octant bounded by the (7) coordinate planes and the plane 3x + 6y + 4z = 12.

120A4

MODULE IV

17.	a)	Determine whether the series converges (i) $\sum_{k=1}^{\infty} \left(\frac{-3}{4}\right)^{k-1}$	(ii) $\sum_{k=1}^{\infty} \frac{1}{(k+3)(k+4)}$	(7)
-----	----	--	---	-----

b) Determine the convergence or divergence of the series $\sum_{k=1}^{\infty} (-1)^k \frac{(2k+1)!}{2^k}$. (7)

OR

- 18. a) Test whether the following series is absolutely convergent or conditionally Convergent $\sum_{k=3}^{\infty} (-1)^k \frac{\ln k}{k}$. (7)
 - b) Check the convergence of the series $\frac{3}{4} + \frac{3.4}{4.6} + \frac{3.4.5}{4.6.8} + \frac{3.4.5.6}{4.6.8.10} + \cdots$ (7)

MODULE V

				(7)
19.	a)	Obtain the Fourier series for the function $f(x) = (\pi - x)^2$,	$-\pi < x < \pi$	(7)

b) Find the half range sine series for $f(x) = x \cos x$ in $(0, \pi)$.

OR

20. a) Find the Fourier series expansion of $f(x) = x^2$ in $(-\pi, \pi)$. Using Parseval's identity deduce that,

$$\frac{\pi^4}{90} = 1 + \frac{1}{2^4} + \frac{1}{3^4} + \frac{1}{4^4} + \dots$$
(7)

(7)

b) Obtain the Fourier series for the function $f(x) = \pi x$ in [0,2] with period 2. (7)